Formularium PoEfS

Let p(x) be your willingness to pay, u(x) your utility, then u'(x) = p(x)Consumer Surplus: $CS = u(x) - p(x) = \int_0^{x*} p(x) - p_x dx$. Maximising this gives: $\frac{\partial CS}{\partial x} = u'(x) - p = 0$. Deadweight loss: $\Delta = \int_{x'}^{x*} v'(x) - c'(x) dx$ Let c(x) be the cost of producing x goods, $\pi(x)$ be the profit. Then $\pi(x) = px - c(x)$. Let *GFT* be the Gains From Trade, then $GFT = CS + \pi$. In perfect competition: $\pi = CS$. Let ϵ be the price elasticity of demand. Then $\varepsilon = -\frac{p}{X_D(p)}X'_D(p)$. \Rightarrow Measures by how many percent demand decreases if the price increases by one percent. Avg product of capital: $\frac{x}{K} = \frac{f(K,L)}{K}$, avg product of labour: $\frac{x}{L} = \frac{f(K,L)}{L}$ Marginal product of capital, labour respectively: $\frac{\partial f(K,L)}{\partial K}$, $\frac{\partial f(K,L)}{\partial L}$ Elasticity of output with respect to captial, labour: $\eta_K = \frac{K}{x} \frac{\partial f(K,L)}{\partial K}, \ \eta_L = \frac{L}{x} \frac{\partial f(K,L)}{\partial L}$ Cobb-Douglas Production Function: $x = AK^{\alpha}L^{\beta}$ The expression $-\frac{dL}{dk}$ is called the marginal rate of substitution of labour for capital Let the price of capital K be r and the price of labour L be w then $\pi(x) = f(K, L)p - rK - wL$. Let A be the value today, V the value in one period from now, then $A = \frac{V}{(1+r)^t}$ (Present Value Analysis) Suppose an asset pays M in each of the next T periods. The Present Discounted Value (PDV) is given by $\frac{M}{r} \left[1 - \frac{1}{(1+r)^{T+1}}\right]$. Marginal rate of substitution: $-\frac{\frac{\partial u(x,y)}{\partial x}}{\frac{\partial u(x,y)}{\partial x}}$ Let M be the budget. The Lagrangian for utitility maximisation: $L(x, y, \lambda) = u(x, y) - \lambda(xp_x + yp_y - M)$ Markup of a monopolistic firm (Lerner index): $\frac{1}{\varepsilon} = \frac{p^m - c'(x^m)}{p^m}$

Monopoly: p(x) + xp'(x) = c'(x) (Marginal Revenue = Marginal Costs)

Perfect Competition: p = c'(x) (Price = Marginal Costs)

Oligopolistic competition (Cournot): derive based on quantity ($Q = q_1 + q_2$). Equal MC implies equal quantities produced. Oligopolistic competition (Bertrand): $\pi(x) = 0$ (Bertrand trap), Marginal Revenue still equal to Marginal Costs.

 \Rightarrow Set price just below Marginal Cost of the other firm and get entire market