
Browsr: A (Very Incomplete)
Web Browser

Software-ontwerp
2020-2021

Iteration 3

Contents

1 Introduction 2

2 General Information 2
2.1 Team Work . 2
2.2 Iterations . 3
2.3 The Software . 3
2.4 Testing . 3
2.5 UML Tools . 4
2.6 What You Should Hand In . 4

2.6.1 Late Submission Policy . 4
2.6.2 When Toledo Fails . 5

2.7 Evaluation . 5
2.7.1 Presentation Of The Current Iteration 5

2.8 Peer/Self-assessment . 6
2.9 Deadlines . 6

3 Browsr 6

4 Use Cases 10
4.1 Use Case: Activate Hyperlink . 12
4.2 Use Case: Enter URL . 12
4.3 Use Case: Fill and Submit Form 12
4.4 Use Case: Activate Bookmark . 13
4.5 Use Case: Add Bookmark . 13
4.6 Use Case: Save Document . 14
4.7 Use Case: Split Pane . 15
4.8 Use Case: Close Frame . 15
4.9 Use Case: Select Frame . 15
4.10 Use Case: Drag Separator . 15
4.11 Use Case: Drag Scrollbar . 16

5 Implementation 16

1

1 Introduction

For the course Software-ontwerp, you will design and develop Browsr, a very
incomplete web browser. The main challenge will be the user interface layer,
which you will design from scratch. In Section 2, we explain how the project is
organized, discuss the quality requirements for the software you will design and
develop, and describe how we evaluate the solutions. In Section 3, we explain
the problem domain of the application. The use cases are discussed in Section 4.
Finally, we specify some implementation constraints in Section 5.

2 General Information

In this section, we explain how the project is organized, what is expected of the
software you will develop and the deliverables you will hand in.

2.1 Team Work

For this project, you will work in groups of four. Each group is assigned an ad-
visor from the educational staff. If you have any questions regarding the project,
you can contact your advisor and schedule a meeting. When you come to the
meeting, you are expected to prepare specific questions and have sufficient design
documentation available. If the design documentation is not of sufficient quality,
the corresponding question will not be answered. It is your own responsibility
to organize meetings with your advisor and we advise to do this regularly. Ex-
perience from previous years shows that groups that regularly meet with their
advisors produce a higher quality design. If there are problems within the group,
you should immediately notify your advisor. Do not wait until right before the
deadline or the exam!

To ensure that every team member practices all topics of the course, a number
of roles are assigned by the team itself to the different members at the start of
each iteration (or shortly thereafter in case of the first iteration). A team member
that is assigned a certain role will give the presentation or demo corresponding
to that role at the end of the iteration. That team member is not supposed to do
all of the work concerning his task ! He must, however, take a coordinating role in
that activity (dividing the work, sending reminders about tasks to be done, make
sure everything comes together, etc.), and be able to answer most questions on
that topic during the evaluation. The following roles will be assigned round-robin:

Design Coordinator The design coordinator coordinates making the design of
your software.

Testing Coordinator The testing coordinator coordinates the planning, design-
ing, and writing of the tests for the software.

Domain Coordinator The domain coordinator coordinates the maintenance of
the domain model.

As already mentioned, the goal of these roles is to make every team member
participate in all aspects of the development of your system. During each pre-
sentation or demo, every team member must be able to explain the

2

used domain model, the design of the system, and the functioning of
your test suite.

2.2 Iterations

The project is divided into 3 iterations. In the first iteration, you will implement
the base functionality of the software. In subsequent iterations, new functionality
will be added and/or existing functionality will be changed.

2.3 The Software

The focus of this course is on the quality (maintainability, extensibility, stability,
readability,. . .) of the software you write. We expect you to use the development
process and the techniques that are taught in this course. One of the most im-
portant concepts are the General Responsibility Assignment Software Principles
(GRASP). These allow you to talk and reason about an object oriented design.
You should be able to explain all your design decisions in terms of
GRASP.

You are required to provide class and method documentation as taught in
previous courses (e.g. the OGP course), as appropriate. When designing and
implementing your system, you should use a defensive programming style. This
means that the client of the public interface of a class cannot bring the objects
of that class, or objects of connected classes, into an inconsistent state.

Unless explicitly stated in the assignment, you do not have to take into account
persistent storage, security, multi-threading, and networking. If you have doubts
about other non-functional concerns, please ask your advisor.

2.4 Testing

All functionality of the software should be tested. For each use case, there
should be a dedicated scenario test class. For each use case flow, there
should be at least one test method that tests the flow. Make sure you group
your test code per step in the use case flow, indicating the step in comments (e.g.
// Step 4b). Scenario tests should not only cover success scenarios, but also
negative scenarios, i.e., whether illegal input is handled defensively and exceptions
are thrown as documented. You determine to which extent you use unit testing.
The testing coordinator briefly motivates the choice during the evaluation of the
iteration.

Tests should have good coverage, i.e. a testing strategy that leaves large
portions of a software system untested is of low value. If your IDE’s test coverage
functionality reports that only 60% of your code is covered by tests, this indicates
there may be a serious problem with (the execution of) your testing strategy.
However, be careful when drawing conclusions from both reported high coverage
and reported low coverage (and understand why you should be careful). The
testing coordinator is expected to briefly report the results of running the test
suite with coverage tracking during the evaluation of the iteration.

3

2.5 UML Tools

There are many tools available to create UML diagrams depicting your design.
You are free to use any of these as long as it produces correct UML. One of these
UML tools is Visual Paradigm. You can find a link to a website where you can
download the program and find the license key. However, we recommend UMLet
for its simplicity.

2.6 What You Should Hand In

Exactly one person of the team hands in a ZIP-archive via Toledo. The archive
contains the items below and follows the structure defined below. Make sure
that you use the prescribed directory names.

• directory groupXX (where XX is your group number (e.g. 01, 12, ...))

– doc: a folder containing, for each API you define in your system, a sub-
folder with the Javadoc for that API. For example, if you implemented
a library of GUI components, include a subfolder with the Javadoc for
this library’s API.

– diagrams: a folder containing UML diagrams that describe your design
(at least one structural overview of your entire design, and sufficient
detailed structural and behavioural diagrams to illustrate every use
case)

– src: your system’s source code

– system.jar: your system’s compiled executable

– design.pdf (optional): a document that clarifies your design and the
main decisions; this document can be a prose text or a slide deck, or
any other form that you deem appropriate.

When including your source code into the archive, make sure to not include
files from your version control system. Make sure you choose relevant file names
for your analysis and design diagrams (e.g. SSDsomeOperation.png). You do not
have to include the project file of your UML tool, only the exported diagrams. We
should be able to start your system by executing the JAR file with the following
command: java -jar system.jar.

Needless to say, the general rule that anything submitted by a student or
group of students must have been authored exclusively by that student or group
of students, and that accepting help from third parties constitutes exam fraud,
applies here.

2.6.1 Late Submission Policy

If the zip file is submitted N minutes late, with 0 ≤ N ≤ 240, the score for all
team members is scaled by (240 − N)/240 for that iteration. For example, if
your solution is submitted 30 minutes late, the score is scaled by 87.5%. So the
maximum score for an iteration for which you can earn 4 points is reduced to 3.5.
If the zip file is submitted more than 4 hours late, the score for all team members
is 0 for that iteration.

4

2.6.2 When Toledo Fails

If the Toledo website is down – and only if Toledo is down – at the time of the
deadline, submit your solution by e-mailing the ZIP-archive to your advisor. The
timestamp of the departmental e-mail server counts as your submission time.

2.7 Evaluation

After iteration 1, and again after iteration 2, there will be an intermediate evalu-
ation of your solution. An intermediate evaluation lasts 35 minutes and consists
of: a presentation about the design and the testing approach, accompanied by a
demo of the system and the test suite.

The intermediate evaluation of an iteration will cover only the part of the
software that was developed during that iteration. Before the final exam, the
entire project will be evaluated. It is your own responsibility to process the
feedback, and discuss the results with your advisor.

The evaluation of an iteration is planned in the week after that iteration. Im-
mediately after the evaluation is done, you mail the PDF file of your presentation
to Prof. Bart Jacobs & Tom Holvoet and to your advisor.

2.7.1 Presentation Of The Current Iteration

The main part of the presentation should cover the design. The motivation of
your design decisions must be explained in terms of GRASP principles. Use the
appropriate design diagrams to illustrate how the most important parts of your
software work. Your presentation should cover the following elements. Note that
these are not necessarily all separate sections in the presentation.

1. An updated version of the domain model that includes the added concepts
and associations.

2. A discussion of the high level design of the software (use GRASP patterns).
Give a rationale for all the important design decisions your team has made.

3. A more detailed discussion of the parts that you think are the most interest-
ing in terms of design (use GRASP patterns). Again we expect a rationale
here for the important design decisions.

4. A discussion of the testing approach used in the current iteration.

5. An overview of the project management. Give an approximation of how
many hours each team member worked. Use the following categories: group
work, individual work, and study (excluding the classes and exercise ses-
sions). In addition, insert a slide that describes the roles of the team mem-
bers of the current iteration, and the roles for the next iteration. Note that
these slides do not have to be presented, but we need the information.

Your presentation should not consist of slides filled with text, but of slides
with clear design diagrams and keywords or a few short sentences. The goal
of giving a presentation is to communicate a message, not to write a novel. All
design diagrams should be clearly readable and use the correct UML notation. It is

5

therefore typically a bad idea to create a single class diagram with all information.
Instead, you can for example use an overview class diagram with only the most
important classes, and use more detailed class diagrams to document specific parts
of the system. Similarly, use appropriate interaction diagrams to illustrate the
working of the most important (or complex) parts of the system.

2.8 Peer/Self-assessment

In order for you to critically reflect upon the contribution of each team member,
you are asked to perform a peer/self-assessment within your team. For each team
member (including yourself) and for each of the criteria below, you must give a
score on the following scale: poor/lacking/adequate/good/excellent. The criteria
to be used are:

• Design skills (use of GRASP and DESIGN patterns, ...)

• Coding skills (correctness, defensive programming, documentation,...)

• Testing skills (approach, test suite, coverage, ...)

• Collaboration (teamwork, communication, commitment)

In addition to the scores themselves, we expect you to briefly explain for each
of the criteria why you have given these particular scores to each of the team
members. The total length of your evaluation should not exceed 1 page.

Please be fair and to the point. Your team members will not have access
to your evaluation report. If the reports reveal significant problems, the project
advisor may discuss these issues with you and/or your team. Please note that
your score for this course will be based on the quality of the work that has been
delivered, and not on how you are rated by your other team members.

Submit your peer/self-assessment by e-mail to both Prof. Bart Jacobs & Tom
Holvoet and your project advisor, using the following subject: [SWOP] peer-
/self-assessment of group $groupnumber$ by $firstname$ $lastname$.

2.9 Deadlines

• The deadline for handing in the ZIP-archive on Toledo is 21 May, 2021,
3:30pm.

• The deadline for submitting your peer/self-assessment is 23 May, 2021,
6pm, by e-mail to both your project advisor and Prof. Bart Jacobs & Tom
Holvoet.

3 Browsr

In this iteration, you will extend Browsr with support for split panes and scrolling.
Develop Browsr, a very incomplete web browser. It only needs to support the

following HTML elements: table, tr, td, a, form, and input. It only needs to
support four attributes: the a element’s href attribute, the input element’s type
and name attributes, and the form element’s action attribute. It only needs to

6

support the values text and submit for the input element’s type attribute. It
need not support the name attribute on input elements that specify value submit

for the type attribute.
Specifically, a Browsr document is a content span. A content span is either

text, or an a element (a hyperlink) containing text, or a table element, or a form

element, or an input element. A table element contains a sequence of zero or
more tr elements (table rows). A tr element contains a sequence of zero or more
td elements (table cells with table data). A td element contains a content span.
A form element contains a content span, but it does not directly or indirectly
contain nested form elements. An input element does not have an end tag, so
it does not have any content. An input type="text" element allows the user to
enter text. An input type="submit" element is shown as a button containing
the text “Submit”.

This means table cells can contain nested tables. It also means Browsr does
not support hyperlinks interspersed with text.

You are not allowed to use any existing HTML parsing or generic parsing
libraries or tools.

To load HTML documents from URLs, just use java.net.URL.openStream.
You are not allowed to use any other URL loading libraries. Your system can
load URLs synchronously; i.e. it is okay if your system freezes while the page is
loading.

Rules for rendering (i.e. displaying) a document:

• Hyperlinks must be shown in blue and underlined

• Your system need not break lines of text that are too long to fit on one line

• Tables must be layed out as follows:

– The width of a column equals the maximum of the widths of the cells
in that column

– The height of a row equals the maximum of the heights of the cells in
that row

– Within a cell, the contents are left/top justified

• Within the document as a whole, the contents are left/top justified

• The width of a text input field is fixed (i.e. independent of the amount of
text entered by the user). It shows the text entered by the user inside a
box. You need not support the case where the text entered by the user does
not fit inside the text box.

Your system shall show a single window whose contents consist of an address
bar, a Bookmarks bar, and a document area. The document area shows one or
more frames, arranged in a hierarchy of panes, where the root pane covers the
document area, and each pane is either a) a leaf pane, in which case it contains
a frame, or b) a horizontal split pane, in which case it contains two child panes
separated by a vertical draggable separator, or c) a vertical split pane, in which
case it contains two child panes separated by a horizontal draggable separator.
Each frame shows a web page. Initially, the root pane is a leaf pane whose frame

7

shows the welcome page. At each point in time, exactly one frame is the focused
frame, indicated by a highlighted border. The user can make a frame the focused
frame by clicking inside it. Pressing Ctrl+H (resp. Ctrl+V) replaces the leaf pane
containing the focused frame by a horizontal (resp. vertical) split pane whose child
panes are leaf panes containing the focused frame and a new frame that shows
the same page.1 Pressing Ctrl+X closes the focused frame. Specifically, if the
pane containing the focused frame is the root pane it replaces the focused frame
by a fresh frame showing the welcome page. Otherwise, it replaces the parent
pane of the leaf pane containing the focused frame by the latter pane’s sibling
pane. Entering a URL into the address bar shows the loaded page in the focused
frame.2 Clicking a hyperlink in a frame causes the URL obtained by composing
(using the two-argument java.net.URL constructor) the existing URL and the
value of the href attribute of the hyperlink to be loaded and shown in the frame.

The Bookmarks bar shows the current bookmarks, side by side, as hyperlinks.
If the user clicks a bookmark, it is dealt with just like any other hyperlink: the
URL is loaded and the page is shown in the focused frame. The initial list of
bookmarks is unspecified. The user can add a bookmark by pressing Ctrl+D.
This shows the Add Bookmark dialog screen, with a text input field for the name
of the bookmark, preceded by a label “Name”, and a text input field for the URL
of the bookmark, preceded by a label “URL”, with the URL of the focused frame
pre-filled, and two buttons: an “Add Bookmark” button and a “Cancel” button.
Clicking the Add Bookmark button adds the bookmark to the end of the list of
bookmarks and closes the dialog screen; clicking the Cancel button simply closes
the dialog screen.

The user can save the document shown in the focused frame as a .html file
by pressing Ctrl+S. This shows the Save As dialog screen, with a text input field
for the filename, preceded by a label “File name”, and two buttons: a “Save”
button and a “Cancel” button. Clicking the “Save” button creates a file with the
given name and writes the currently shown HTML document to it, and closes the
dialog screen. Clicking the “Cancel” button simply closes the dialog screen.

A dialog screen covers the entire CanvasWindow client area. That is, while
a dialog screen is shown, the regular contents of the CanvasWindow client area
(i.e. the Address bar, the Bookmark bar, and the document area) are not visible.
While a dialog screen is shown, pressing Ctrl+D or Ctrl+S does not have any
effect. After a dialog screen is closed, the original state of the CanvasWindow
client area is restored, including the state of the text input fields in the document
area. That is, any text entered by the user into any text input fields before they
opened the dialog screen will still be present after they close the dialog screen.

Clicking the address bar, a text input field corresponding to an input type=-
"text" element, or a text input field in a dialog screen causes the text input field
to receive keyboard focus. When the text input field has keyboard focus, you
shall show an insertion point (i.e. a “text cursor”). Typing characters causes
the characters to be inserted at the insertion point; the Delete, Backspace, Left,
Right, Home, End, Shift-Left, Shift-Right, Shift-Home, and Shift-End keys shall
behave as usual. Typing characters while text is selected replaces the selected

1Teams may choose whether to copy form input field values or not, and whether to load the
URL again or not.

2It is also permitted to have a separate address bar and/or Bookmarks bar in each frame.

8

<form action="browsrformactiontest.php">

<table>

<tr><td>List words from the Woordenlijst Nederlandse Taal

<tr><td>

<table>

<tr>

<td>Starts with:

<td><input type="text" name="starts_with">

<tr>

<td>Max. results:

<td><input type="text" name="max_nb_results">

</table>

<tr><td><input type="submit">

</table>

</form>

Figure 1: An example Browsr document

text. When clicking the text input field, initially all text is selected. Selected text
shall be shown on a blue background.

You shall support scrolling of text input fields and of frames. Specifically,
as part of each frame a horizontal and vertical scrollbar shall be shown at all
times. Also, as part of each text input field (form input field, dialog input field,
or address bar input field) a horizontal scrollbar shall be shown at all times. Each
scrollbar has a draggable slider. The size of the slider with respect to the size of
the scrollbar must equal the size of the visible part of the content with respect to
the size of the content.

Hitting the Enter key or clicking outside the address bar causes the address
bar to lose focus and causes the system to navigate to the URL given by the
contents of the address bar. Hitting the Escape key causes the text that was
present before the address bar gained keyboard focus to be restored, and causes
the address bar to lose focus.

Clicking a Submit button causes the focused frame to navigate to the URL
obtained by composing the current URL with the URL specified in the enclosing
form element’s action attribute, followed by a question mark and the URL-
encoded names (as can be obtained using class java.net.URLEncoder with the
UTF-8 character encoding) and values of the input type="text" elements con-
tained within the form element. If a Submit button is not contained within a
form, clicking it does nothing.

Consider the example document in Fig. 1, loaded from URL

https://people.cs.kuleuven.be/~bart.jacobs/swop/browsrformtest.html

If the user enters the characters ’s a into the first text input field, and the
characters 10 into the second text input field, and then clicks the Submit button,
the system shall navigate to the URL

https://people.cs.kuleuven.be/~bart.jacobs/swop/

9

Figure 2: Domain model

browsrformactiontest.php?starts_with=%27s+a&max_nb_results=10

In case of an error parsing the URL, loading the document, or parsing the
document, an error document shall be shown in the focused frame. When Browsr
starts, a welcome document shall be shown in the document area.

The visual representation of Submit buttons and of the buttons in dialog
screens shall be such that users shall clearly recognize them as being buttons, by
(for example) showing their label within a rounded rectangle, against a darker
background color. Also, the action corresponding to a button shall occur only
when the mouse button is released after being pressed while the mouse cursor
was over the button. While the mouse button is down, the button shall be shown
differently to indicate that the button is being pressed. (We leave unspecified
what happens if the mouse cursor leaves the button while the mouse button is
still pressed.)

Figure 2 shows the domain model of Browsr.
Clearly, at this level of abstraction, the problem domain is quite simple. The

main challenge of this assignment, then, lies not in the design of the domain layer
of your system, but in the design of the user interface layer.

4 Use Cases

Figure 3 shows the use case diagram for Browsr. The remainder of this section
describes the use cases in detail.

Notes:

10

Drag Scrollbar

Drag Separator

Select Frame

Close Frame

Split Pane

Save Document

Fill and Submit Form

Add Bookmark

Activate Bookmark

Enter URL

Activate Hyperlink

User

System

Figure 3: Use case diagram for Browsr.

• A system’s requirements can be specified at various levels of abstraction with
respect to the nature of the interface between the system and its environment
(e.g. a human user). Often the specification abstracts over the nature of the
interface to focus on the aspects that are most relevant to the usefulness of
the system. However, in this assignment, since the main challenge concerns
the design of the code that implements the user interface, we specify the
interaction with the user in unusually specific detail.

• While the tool you develop should be functional, the user interface need not
be of the level of “finish” that would be expected of a commercial product.
For example:

– The text cursor need not blink.

– You need not support scrolling the window if the information does not
fit into the window.

– You need not (in this iteration) provide a menu, printing functionality,
etc.

11

4.1 Use Case: Activate Hyperlink

Main Success Scenario:

1. The user clicks a hyperlink in the focused frame.

2. The system composes the hyperlink’s href attribute value with the
referring document’s URL to obtain the full URL for the document to
be loaded. It loads the document and shows it in the focused frame.
It also updates the Address bar to show the document’s full URL.

Extensions:

2a. The URL is malformed, loading the document fails, or parsing the
document fails.

1. The system shows an error document in the focused frame.

4.2 Use Case: Enter URL

Main Success Scenario:

1. The user clicks the Address bar.

2. The system indicates that the Address bar has focus, and shows the
entire contents of the Address bar as selected.

3. The user edits the contents of the Address bar by pressing Backspace,
Delete, Left, Right, Home, End, Shift-Left, Shift-Right, Shift-Home,
and Shift-End to move the insertion point and select text, and character
keys to replace the selection with the entered character or insert the
character at the insertion point.

4. The system shows the updated contents as they are being edited.

5. The user presses Enter or clicks outside the Address bar to finish editing
the contents.

6. The system loads the document and shows it in the focused frame.

Extensions:

5a. The user presses Escape to cancel editing the contents of the Address
bar.

1. The contents are changed back to the value that was active when
the Address bar received focus.

6a. The URL is malformed, loading the document fails, or parsing the
document fails.

1. The system shows an error document in the focused frame.

4.3 Use Case: Fill and Submit Form

Precondition: The current document in the focused frame defines at least one
form.

Main Success Scenario:

12

1. The user clicks a text input field in the focused frame.

2. The system indicates that the text input field has focus, and shows the
entire contents of the text input field as selected.

3. The user edits the contents of the text input field by pressing Backspace,
Delete, Left, Right, Home, End, Shift-Left, Shift-Right, Shift-Home,
and Shift-End to move the insertion point and select text, and char-
acter keys to replace the selection with the entered character or insert
the character at the insertion point.

4. The system shows the updated contents as they are being edited.

The user repeats Steps 1–4 until they are done filling the form.

5. The user clicks the form’s Submit button.

6. The system loads the document at the URL obtained by composing the
current document’s URL with the URL specified in the form element’s
action attribute, followed by a question mark and the names and
values of the form’s text input fields, and shows it in the focused frame.
It shows the new document’s URL in the Address bar.

Extensions:

6a. The URL is malformed, loading the document fails, or parsing the
document fails.

1. The system shows an error document in the focused frame.

4.4 Use Case: Activate Bookmark

Main Success Scenario:

1. The user clicks a bookmark in the Bookmark bar.

2. The system loads the document at the bookmark’s URL and shows
it in the focused frame. It also updates the Address bar to show the
document’s URL.

Extensions:

2a. The URL is malformed, loading the document fails, or parsing the
document fails.

1. The system shows an error document in the focused frame.

4.5 Use Case: Add Bookmark

Main Success Scenario:

1. The user presses Ctrl+D.

2. The system shows a dialog screen titled “Add Bookmark” that cov-
ers the CanvasWindow client area. The dialog screen contains a text
input field for the name of the new bookmark, preceded by the label

13

“Name”, and a text input field for the URL of the new bookmark, pre-
ceded by the label “URL”. It also contains two buttons, labelled “Add
Bookmark” and “Cancel”, respectively.

3. The user clicks one of the text input fields.

4. The system indicates that the text input field has focus, and shows the
entire contents of the text input field as selected.

5. The user edits the contents of the text input field by pressing Backspace,
Delete, Left, Right, Home, End, Shift-Left, Shift-Right, Shift-Home,
and Shift-End to move the insertion point and select text, and char-
acter keys to replace the selection with the entered character or insert
the character at the insertion point.

6. The system shows the updated contents as they are being edited.

The user repeats Steps 3–6 until they are done filling the dialog screen.

7. The user clicks the Add Bookmark button.

8. The system adds the bookmark to the list of bookmarks shown in the
Bookmark bar and closes the dialog screen.

Extensions:

7a. The user clicks the Cancel button.

1. The system closes the dialog screen without adding a new book-
mark to the list of bookmarks.

4.6 Use Case: Save Document

Main Success Scenario:

1. The user presses Ctrl+S.

2. The system shows a dialog screen titled “Save As” that covers the
CanvasWindow client area. The dialog screen contains a text input
field for the name of the .html file to be created, preceded by the
label “File name”. It also contains two buttons, labelled “Save” and
“Cancel”, respectively.

3. The user clicks the text input field.

4. The system indicates that the text input field has focus, and shows the
entire contents of the text input field as selected.

5. The user edits the contents of the text input field by pressing Backspace,
Delete, Left, Right, Home, End, Shift-Left, Shift-Right, Shift-Home,
and Shift-End to move the insertion point and select text, and char-
acter keys to replace the selection with the entered character or insert
the character at the insertion point.

6. The system shows the updated contents as they are being edited.

The user repeats Steps 3–6 until they are done filling the dialog screen.

14

7. The user clicks the Save button.

8. The system creates a file with the specified name, writes the current
document in the focused frame into it, and closes the dialog screen.

Extensions:

7a. The user clicks the Cancel button.

1. The system closes the dialog screen without creating a file.

4.7 Use Case: Split Pane

Main Success Scenario:

1. The user presses Ctrl+H (resp. Ctrl+V).

2. The system replaces the leaf pane containing the focused frame by a
horizontal (resp. vertical) split pane whose child panes are leaf panes
containing the focused frame and a new frame showing the same page.

4.8 Use Case: Close Frame

Main Success Scenario:

1. The user presses Ctrl+X.

2. The system replaces the parent pane of the leaf pane containing the
focused frame by the latter pane’s sibling pane. It sets some remaining
frame as the new focused frame.

Extensions:

2a. The leaf pane containing the focused frame is the root pane.

1. The system replaces the focused frame by a fresh frame showing
the welcome page.

4.9 Use Case: Select Frame

Main Success Scenario:

1. The user clicks inside a frame.

2. The system sets this frame as the focused frame.

4.10 Use Case: Drag Separator

Main Success Scenario:

1. The user drags the separator that separates the child panes of a split
pane to a new position.

2. The system updates the layout of the document area accordingly.

15

4.11 Use Case: Drag Scrollbar

Main Success Scenario:

1. The user drags the slider of the horizontal or vertical scrollbar of a
frame or the horizontal scrollbar of a form input field, a dialog input
field, or an address bar input field.

2. The system shows the part of the content that corresponds to the new
position of the scrollbar slider.

5 Implementation

The main design challenge is to design the presentation layer of your system. You
will have to develop your own GUI framework. You have to develop your system
in Java, but you are not allowed to use an existing Java GUI framework, such as
AWT, Swing, or SWT. You have to use the CanvasWindow class attached. You
are not allowed to modify it. You are allowed to use the AWT elements (such as
FontMetrics and Graphics) that are necessary to use this class, but you cannot
use the AWT or Swing component hierarchies. Good luck!

The SWOP Team members

16

	Introduction
	General Information
	Team Work
	Iterations
	The Software
	Testing
	UML Tools
	What You Should Hand In
	Late Submission Policy
	When Toledo Fails

	Evaluation
	Presentation Of The Current Iteration

	Peer/Self-assessment
	Deadlines

	Browsr
	Use Cases
	Use Case: Activate Hyperlink
	Use Case: Enter URL
	Use Case: Fill and Submit Form
	Use Case: Activate Bookmark
	Use Case: Add Bookmark
	Use Case: Save Document
	Use Case: Split Pane
	Use Case: Close Frame
	Use Case: Select Frame
	Use Case: Drag Separator
	Use Case: Drag Scrollbar

	Implementation

