
 1

Deel 4: Associaties

Class diagrams kunnen uitleggen.

Class diagrams provide an overview of classes and their associations, attributes1 and methods.

Class diagram encapsulate the implementation.

Side issue

Object diagrams are another type of diagram supported by UML2. They involve objects,

linked with other objects, values of attributes and so on.

There are two principles defined for classification. These rules are temporary as inheritance

will solve this problem.

1. Static classification

Each object is an instance of the same class for its entire lifetime.

2. Disjoint classification (=dynamic classification)

Classes should be specific enough in order to allo< for each object to fit

exactly in one class. See coding rule 77 for manipulation.

Het concept uni-directional association kunnen uitleggen.

If there is a uni-directional association from one class to another, the former one will provide

constructors for initializing the associated properties, and provide inspectors and mutators

for them. (example BankAccount and Person)

Uni-directional associations are stored as a variable with the referred clas as its type.

Remark: When invariants may become violated upon a change of the associated object, it’ll

better to design the underlying relation as a bidirectional association.

Het concept bi-directional association kunnen uitleggen.

If we require functionalities in both directions, or if this is expected to happen in the future,

we’ll need bi-directional associations. Navigation is supported in both directions, as bi-

directionally associated objects are aware of one another.

Remark: Give the control over to the least complex of both participating classes. A simple

measure for the complexity is the amount of methods of a class.

1 public variable inside the class/object
2 graphical language that offers several types of diagrams to document different

aspects of software systems

 2

Lists, sets and maps kunnen uitleggen.

When implementing associations with unrestricted multiplicity, we use the collections

framework to store references to objects with which the prime object is associated. Collections

are either lists, sets and maps. In a list, the order is important. In a set, the elements are not

positionally ordered and it cannot have multiple occurrences of the same element. Maps are

data structures in which keys are mapped onto values.

Lists Sets Maps

▪ ArrayList

The array lists grow and

shrink according to the

number of elements they

contain

▪ LinkedList

Elements are explicitly

linked to each other.

▪ Vector

Offers same methods as

ArrayList. (old version)

▪ HashSet

Do not always return

their elements in the

same order. Allows to

easily and quickly

determine whether an

object is already in

the set or not.

▪ LinkedHashSet

Returns elements

always in the same

order.

▪ TreeSet

Stores elements in

some ascending order.

▪ HashMap

Same as ArrayList.

▪ LinkedHashMap

Same as LinkedList.

▪ TreeMap

Same as Vector.

Remark: A set cannot have multiple occurrences of the same element.

