Exam Stellar Structure and Evolution 3 September 2019, 14:00–17:00

Name: Student number:

The written part of the exam counts for 12 points. The MESA lab work + its oral exam counts for 8 points. You can only pass this course if you pass both parts separately.

- 1. Consider a star that got born in the same stellar cluster than the Sun, but with a mass of $6 \,\mathrm{M}_{\odot}$.
 - Compute the luminosity that this star had at its onset of core hydrogen burning.
 - Compute the average density of this star at the ZAMS. Is this higher or lower than the average density of the Sun at the ZAMS? By how much?
 - Is this star still alive? Explain why (not). What kind of object is it now?
 - This star will (have) enrich(ed) the Milky Way with chemical elements. What is the most dominant chemical element that it will deliver to its surroundings? Explain.

(maximally 2 pages, 6 points)

- 2. Give an explanation/definition, using maximally 1/3 of a page for each of the following physical phenomena. Indicate if the phenomenon will occur in the life of three stars that just got born with solar metallicity and with a mass of 0.5, 5.0, $50 \, \mathrm{M}_{\odot}$, respectively. Explain why (not):
 - helium flash
 - triple-alpha reaction
 - third dredge-up
 - P Cygni profile
 - rapid neutron capture
 - Eddington limit

(maximally 2 pages, 6 points)