Formularium PoEfS

Let $p(x)$ be your willingness to pay, $u(x)$ your utility, then $u^{\prime}(x)=p(x)$
Consumer Surplus: $C S=u(x)-p(x)=\int_{0}^{x *} p(x)-p_{x} d x$. Maximising this gives: $\frac{\partial C S}{\partial x}=u^{\prime}(x)-p=0$.
Deadweight loss: $\Delta=\int_{x^{\prime}}^{x *} p^{\prime}(x)-c^{\prime}(x) d x$
Let $c(x)$ be the cost of producing x goods, $\pi(x)$ be the profit. Then $\pi(x)=p x-c(x)$.
Let $G F T$ be the Gains From Trade, then $G F T=C S+\pi$. In perfect competition: $\pi=C S$.
Let ϵ be the price elasticity of demand. Then $\varepsilon=-\frac{p}{X_{D}(p)} X_{D}^{\prime}(p)$.
\Rightarrow Measures by how many percent demand decreases if the price increases by one percent. $\left\{\begin{array}{l}\varepsilon<1 \text { : inelastic } \\ \varepsilon>1 \text { : elastic }\end{array}\right.$
Avg product of capital: $\frac{x}{K}=\frac{f(K, L)}{K}$, avg product of labour: $\frac{x}{L}=\frac{f(K, L)}{L}$
Marginal product of capital, labour respectively: $\frac{\partial f(K, L)}{\partial K}, \frac{\partial f(K, L)}{\partial L}$
Elasticity of output with respect to capital, labour: $\eta_{K}=\frac{K}{x} \frac{\partial f(K, L)}{\partial K}, \eta_{L}=\frac{L}{x} \frac{\partial f(K, L)}{\partial L}$
Cobb-Douglas Production Function: $x=A K^{\alpha} L^{\beta}$
The expression $-\frac{d L}{d k}$ is called the marginal rate of substitution of labour for capital
Let the price of capital K be r and the price of labour L be w then $\pi(x)=f(K, L) p-r K-w L$.
Let A be the value today, V the value in one period from now, then $A=\frac{V}{(1+r)^{t}}$ (Present Value Analysis)
Suppose an asset pays M in each of the next T periods. The Present Discounted Value (PDV) is given by $\frac{M}{r}\left[1-\frac{1}{(1+r)^{T+1}}\right]$.
Let M be the budget. The Lagrangian for utitility maximisation: $L(x, y, \lambda)=u(x, y)-\lambda\left(x p_{x}+y p_{y}-M\right)$
Marginal rate of substitution: $-\frac{\partial u(x, y)}{\partial x} / \frac{\partial u(x, y)}{\partial y}$
Marginal rate of substitution: $-\frac{\partial(x, y)}{\partial x} / \frac{\partial(x, y)}{\partial y}$
Markup of a monopolistic firm (Lerner index) $: \frac{1}{\varepsilon}=\frac{p^{m}-c^{\prime}\left(x^{m}\right)}{p^{m}}\left\{\begin{array}{l}\frac{1}{\varepsilon} \approx 0 \text { : Perfect Competition (no market power) } \\ \frac{1}{\varepsilon} \approx 1 \text { : Demand is perfectly inelastic (much market power) }\end{array}\right.$
Monopoly: $p(x)+x p^{\prime}(x)=c^{\prime}(x)$ (Marginal Revenue $=$ Marginal Costs)
Perfect Competition: $p=c^{\prime}(x)$ (Price $=$ Marginal Costs)
Oligopolistic competition (Cournot): derive based on quantity ($Q=q_{1}+q_{2}$). Equal MC implies $q_{1}=q_{2}$.
Oligopolistic competition (Bertrand): $\pi(x)=0$ (Bertrand trap), Marginal Revenue still equal to Marginal Costs.
\Rightarrow Set price just below Marginal Cost of the other firm and get entire market

