Operator Algebras

Anoniempje

13 June 2025

- 1. Let $\mathcal{X} = \{u_n \mid n \in \mathbb{N}\}$ and $\mathcal{R} = \{u_n^* u_n = u_n u_n^* = \mathbf{1}\}.$
 - (a) (3 points) Justify rigorously that $B := C^*(\mathcal{X} | \mathcal{R})$ exists.
 - (b) (7 points) Let A be a unital, separable C^{*}-algebra. Show that there is an ideal $J \subseteq B$ such that B/J is *-isomorphic to A.
- 2. (10 points) Let A be a C*-algebra, $\alpha : A \to A$ a *-automorphism, and $\phi \in \mathcal{S}(A)$ a state with induced GNS-triple (π, \mathcal{H}, ξ) . Suppose $\phi = \phi \circ \alpha$.

Show that there exists a unitary $\mathcal{H} \to \mathcal{H}$ such that $U\pi(a)U^* = \pi(\alpha(a))$ for all $a \in A$. <u>**Hint:**</u> Review the GNS-construction, in particular how π and \mathcal{H} were defined. How would U need to look on the canonical dense subspace of \mathcal{H} ?

3. (a) (7 points) Let A ⊆ L(H) be a concrete C*-algebra with 1 ∈ A and set M := A". Show that for every unitary u in M, there exists a net of unitaries v_λ in A, such that v_λ → u in the strong operator topology.

<u>Hint:</u> Remember that $\exp(it) = \cos(t) + i\sin(t)$ for all $t \in \mathbb{R}$.

- (b) (3 points) Does the same hold for projections, <u>i.e.</u>, for every projection p in M, there exists a net of projections q_{λ} in A, such that $q_{\lambda} \xrightarrow{\text{SOT}} p$. Give a sketch of proof or a motivated counterexample.
- 4. Let A be a non-zero C*-algebra. A state $\phi \in \mathcal{S}(A)$ is called <u>faithful</u> if for every non-zero $x, \phi(x^*x) \neq 0$.
 - (a) (5 points) Show that if A is separable, there exists a faithful state on A.
 - (b) (5 points) Give an example of a non-zero C*-algebra that has no faithful state.
 <u>Hint:</u> Think of commutative C*-algebras with very large Gelfand spectrum.