
Samenvatting G&A

1 Les 2: Basic Sorting Methods

1.1 Selection Sort

Algoritme 1: Selection Sort

1 pub l i c c l a s s S e l e c t i o n {
2 pub l i c s t a t i c void s o r t ( comparable [ ] a ){
3 i n t N = a . l ength ;
4 f o r ( i n t i = 0 ; i < N; i++){
5 i n t min = i ;
6 f o r ( i n t j = i +1; j < N; j++)
7 i f ( l e s s ( a [ j ] , a [ min ] ) ) min = j ;
8 exch (a , i , min ) ;
9 }

10 }
11 }

Proof 1: Selection Sort uses ∼ N2/2 compares and N exchanges to sort an array of length
N.
This can be proven by examining the trace, which is an N-by-N table in which unshaded letters correspond
to compares. About one-half of the entries in the table are unshaded - those on and above the diagonal.
The entries on the diagonal each correspond to an exchange. More precisely, examination of the code
reveals that, for each i from 0 to N-1, there is one exchange and N - 1 - i compares, so the totals are N
exchanges and (N − 1) + (N − 2) + ... + 2 + 1 + 0 = N(N − 1)/2 ∼ N2/2 compares.

1.2 Insertion Sort

Algoritme 2: Insertion Sort

1 pub l i c c l a s s I n s e r t i o n {
2 pub l i c s t a t i c void s o r t ( comparable [ ] a ){
3 i n t N = a . l ength ;
4 f o r ( i n t i = 1 ; i < N; i++){
5 f o r ( i n t j = i ; j > 0 && l e s s ( a [ j ] , a [ j −1] ; j−−)
6 exch (a , j , j −1);
7 }
8 }
9 }

Proof 2: Insertion Sort uses ∼ N2/4 compares and ∼ N2/4 exchanges to sort a randomly
ordered array of length N with distinct keys, on the average. The worst case is ∼ N2/2
exchanges and the best case is N − 1 compares and 0 exchanges.
Like in Proof 1, this can e visualized in the N-by-N diagram we use to illustrate the sort. We count entries
below the diagonal - all of them, in the worst case, and none of them, in the best case. For randomly
ordered arrays, we expect each item to go about halfway back, on the average, so we count one-half of
the entries below the diagonal. The number of compares is the number of exchanges plus an additional
term equal to N minus the numer of times the item is inserted is the smallest so far. In the worst case
(array in reverse order), this term is negligible in relation to the total; in the base case (array is in order)
it is equal to N - 1.
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1.3 Merge Sort

Algoritme 3: Merge Sort

1 pub l i c c l a s s Merge{
2 pr i va t e s t a t i c Comparable [ ] aux ;
3

4 pub l i c s t a t i c void s o r t ( comparable [ ] a ){
5 aux = new Comparable [ a . l ength ] ;
6 s o r t ( a , aux , 0 , a . l ength − 1 ) ;
7 }
8

9 pub l i c s t a t i c void s o r t ( Comparable [ ] a , Comparable [ ] aux ,
10 i n t lo , i n t h i ){
11 i f ( h i <= lo ) return ;
12 i n t mid = lo + ( hi − l o ) / 2 ;
13 s o r t ( a , aux , lo , mid ) ;
14 s o r t ( a , aux , mid + 1 , h i ) ;
15 merge (a , aux , lo , mid , h i ) ;
16 }
17

18 pub l i c s t a t i c void merge (Comparable [ ] a , i n t lo , i n t mid , i n t h i ){
19 Comparable aux = new Comparable [ a . l ength ] ;
20 f o r ( i n t k = lo ; k <= hi ; k++) aux [ k ] = a [ k ] ; // copy
21 i n t i = lo , j = mid + 1 ; //merge
22 f o r ( i n t k = lo ; k <= hi ; k++) {
23 i f ( i > mid) a [ k ] = aux [ j ++];
24 e l s e i f ( j > hi ) a [ k ] = aux [ i ++];
25 e l s e i f ( l e s s ( aux [ j ] , aux [ i ] ) ) a [ k ] = aux [ j ++];
26 e l s e a [ k ] = aux [ i ++];
27 }
28 }
29 }

Proof 3: Merge Sort uses between ∼ 1/2Nlog2(N) and ∼ Nlog2(N) compares and exchanges
to sort an array of length N.
Let C(N) be the number of compares needed to sort an array of length N. We have C(0) = C(1) = 0 and for
N > 0 we can write a recurrence relationship that directly mirrors the recursive sort() method to establish
an upper bound: C(N) ≤ C([N/2])+C([N/2])+N . The first term on the right is the number of compares
to sort the left half of the array, the second term is the number of compares to sort the right half, and the
third term is the number of compares for the merge. The lower bound C(N) ≥ C([N/2]) +C([N/2]) +N
follows because the number of compares for the merge is at least [N/2]. We derive an exact solution to
the recurrence when equality holds and N is a power of 2. First, since [N/2] = 2n−1, we have C(2n) =
2C(2n−1) + 2n. We divide both sides by 2n and apply the same equation to the first term on the right
to get C(2n)/2n = C(2n−2)/2n−2 + 1 + 1. If we repeat the previous step n-1 additional times we get
C(2n)/2n = C(20)/20 + n, which, after multiplying both sides by 2n leaves us with the solution: C(N) =
C(2n) = n2n = Nlog2(N)
Note: Merge Sort does not work in place, unlike the previous two sorting algorithms. It
uses more space than N.

1.4 Addendum: benadering van Stirling

Te bewijzen: log2(n!) = nlog2(n)
Bewijs: log2(n!) = log2(e)ln(n!)
= log2(e)[ln(n) + ln(n− 1) + ... + ln(2) + ln(1)]
We benaderen vervolgens de som van de natuurlijke logaritmes door een integraal (wat een kleine bena-
deringsfout als gevolg heeft).
≈ log2(e)

∫ n

1
ln(x)dx

= log2(e)[nln(n)− n + 1]
= nlog2(n)− nlog2(e) + log2(e)
≈ nlog2(n)
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2 Les 3 & 4: QuickSort

The crux of the method is the partitioning process, which rearranges the array to make the following
three conditions hold:

• The entry a[j] is in its final place in the array, for some j.

• No entry in a[lo] through a[j-1] is greater than a[j].

• No entry in a[j+1] through a[hi] is less than a[j].

2.1 QuickSort variant 1

→ Choose pivot element (e.g. first element)
→ Create 2 arrays: left[] and right[]
→ Loop over all elements
→ If element < pivot, put into left[]
→ If element > pivot, put into right[]
→ (if element == pivot, left or right)
→ Concatenate left[] + pivot + right[]

2.2 QuickSort variant 2

Algoritme 1: QuickSort (variant 2)

1 pub l i c c l a s s Quick{
2 pub l i c s t a t i c void s o r t ( Comparable [ ] a ){
3 StdRandom . s h u f f l e ( a ) ; // El iminate dependence on input
4 s o r t ( a , 0 , a . l ength − 1 ) ;
5 }
6

7 pr i va t e s t a t i c void s o r t ( Comparable [ ] a , i n t lo , i n t h i ){
8 i f ( h i <= lo ) return ;
9 i n t j = pa r t i t i o n (a , lo , h i ) ;

10 s o r t ( a , lo , j −1);
11 s o r t ( a , j +1, h i ) ;
12 }
13

14 pr i va t e s t a t i c i n t p a r t i t i o n (Comparable [ ] a , i n t l l , i n t h i ){
15 i n t i = lo , j = hi + 1 ; // l e f t and r i gh t scan i n d i c e s
16 Comparable v = a [ l o ] ; // p a r t i t i o n i n g item
17 whi le ( t rue ){
18 // scan r ight , scan l e f t , check f o r scan complete , and exchange
19 whi le ( l e s s ( a[++ i ] , v ) ) i f ( i == hi ) break ;
20 whi le ( l e s s (v , a[−− j ] ) ) i f ( j == lo ) break ;
21 i f ( i >= j ) break ;
22 exch (a , i , j ) ;
23 }
24 exch (a , lo , j ) ; //Put p a r t i t i o n i n g item v in to a [ j ]
25 re turn j ; //with a [ l o . . . j −1] <= a [ j ] <= a [ j+1 . . . h i ]
26 }
27 }
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2.3 Variant 3: Lumoto

Algoritme 2: QuickSort (Lumoto)

1 pub l i c c l a s s Quick{
2 pr i va t e s t a t i c i n t p a r t i t i o n (Comparable [ ] a , i n t lo , i n t h i ){
3 // Pa r t i t i on in to a [ l o . . i ] , a [ i +1] , a [ i +1. . h i ] .
4 i n t i = lo −1; // scan index
5 Comparable v = a [ h i ] ; // p a r t i t i o n i n g value
6 f o r ( i n t j = lo ; j <= hi −1; j++){
7 // scan a l l e lements
8 i f ( l e s s ( a [ j ] , v ) ) {
9 i++;

10 exch (a , i , j ) ;
11 }
12 }
13 exch (a , i +1, h i ) ; // Put v in to po s i t i o n
14 re turn i +1; // with a [ l o . . i ] <= a [ i +1] <= a [ i +1. . h i ] .
15 }
16 }

2.4 Tijdscomplexiteit

Proof 1: QuickSort uses 1.39Nlog2(N) comparisons on average.
Let C be the number of comparisons and N the number of elements in the array. The precise recurrence
satisfies C0 = C1 = 0 and for N ≥ 2:
CN = N + 1 + ((C0 + CN−1) + ... + (Ck−1 + CN−k) + ... + (CN−1 + C1))/N

= N + 1 + 2(C0 + ... + Ck−1 + ... + CN−1)/N
We multiply both sides by N:
NCN = N(N + 1) + 2(C0 + ... + Ck−1 + ... + CN−1)
We subtract the same formula for N-1:
NCN − (N1)CN1

= N(N + 1)− (N1)N + 2CN−1
Next, we simplify:
NCN = (N + 1)CN1

+ 2N
We divide both sides by N(N+1) to get a telescoping sum:
CN/(N + 1) = CN1/N + 2/(N + 1)

= CN−2/(N − 1) + 2/N + 2/(N + 1)
= CN−3/(N − 2) + 2/(N − 1) + 2/N + 2/(N + 1)
= 2(1 + 1/2 + 1/3 + ... + 1/N + 1/(N + 1))

We approximate the exact answer by an integral:
CN ≈ 2(N + 1)(1 + 1/2 + 1/3 + ... + 1/N)
≈ 2(N + 1)

∫ n

1
dx/x

Finally, we get the desired result:
CN ≈ 2(N + 1)lnN
≈ 1.39Nlog2(N)

Proof 2: QuickSort uses ∼ N2/2 compares in the worst case.
Note: random shuffling of the array protects against this case.
The number of compares used when one of the subarrays is empty for every partition is:
N + (N-1) + (N-2) + ... + 2 + 1 = (N+1) N/2 ∼ N2/2
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2.5 Optimalisaties

→ Cutoff to insertion sort
→ ∼ 10 elements
→ Median of 3 values for pivot
→ Better probability of splitting roughly in half
→ Many similar values
→ 3-way partitioning (less, equal, greater)

Algoritme 3: 3-way QuickSort

1 pub l i c c l a s s Quick3way{
2 pr i va t e s t a t i c void s o r t ( Comparable [ ] a , i n t lo , i n t h i ){
3 i f ( hi<=lo ) return ;
4 i n t l t = lo , i = l o +1, gt = hi ;
5 Comparable v = a [ l o ] ;
6 whi le ( i <= gt ){
7 i n t cmp = a [ i ] . comparaTo (v ) ;
8 i f (cmp < 0) exch (a , l t++, i ++);
9 e l s e i f (cmp > 0) exch (a , i , gt−−);

10 e l s e i++;
11 }
12 s o r t ( a , lo , l t −1);
13 s o r t ( a , gt + 1 , h i ) ;
14 }
15 }

5



3 Les 5: Sorting in linear time

3.1 Key-indexed counting

Algoritme 1: key-indexed counting

1 pub l i c c l a s s Key{
2 pr i va t e s t a t i c void s o r t ( Item [ ] a , i n t R){
3 Item [ ] aux = new Str ing [N ] ;
4 i n t [ ] count = new in t [R+1] ;
5

6 //Compute f requency counts
7 f o r ( i n t i = 0 ; i < N; i++)
8 count [ a [ i ] . key ( ) + 1]++;
9 //Transform counts to i n d i c e s

10 f o r ( i n t r = 0 ; r < R; r++)
11 count [ r+1] += count [ r ] ;
12 // D i s t r i bu t e the r e co rd s
13 f o r ( i n t i = 0 ; i < N; i++)
14 aux [ count [ a [ i ] . key ()]++] = a [ i ] ;
15 //Copy back
16 f o r ( i n t i = 0 ; i < N; i++)
17 a [ i ] = aux [ i ] ;
18 }
19 }

Key-indexed counting wordt gebruikt op data waarbij de keys kleine integers zijn. Eerst wordt voor elke
key opgeteld hoeveel keer deze voorkomt in de array. Vervolgens worden deze aantallen omgezet naar
indices: stel dat key[1] 5 keer voor kwam, key[2] 3 keer voor kwam en key[3] 7 keer voor kwam, dan begint
key[1] met index 0, key[2] met index 5 en key[3] op index 8 (en key[4] dan op index 15). Vervolgens wordt
dit dan in een auxiliary array gestopt. Hierdoor is het algoritme stabiel: de volgorde bij elementen met
dezelfde key wordt behouden.
Proof 1: Key-indexed counting uses 11N + 4R + 1 array accesses to stably sort N items
whose keys are integers between 0 and R-1.
Initializing the arrays uses N + R + 1 accesses. The first loop increments a counter for each of the N
items (3N accesses); the second loop does R additions (3R array access); the third loop does N counter
increments and N data moves (5N array accesses); and the fourth loop does N data moves (2N array
accesses).
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3.2 Least-significant digit first (radix)

Algoritme 2: LSD string sort

1 pub l i c c l a s s LSD{
2 pub l i c s t a t i c void s o r t ( S t r ing [ ] a , i n t R){
3 i n t N = a . l ength ;
4 i n t R = 256 ;
5 St r ing [ ] aux = new St r ing [N ] ;
6

7 f o r ( i n t d = W−1; d >= 0; d−−){
8 //Compute f requency counts
9 i n t [ ] count = new in t [R+1] ;

10 f o r ( i n t i = 0 ; i < N; i++)
11 count [ a [ i ] . charAt (d) + 1]++;
12 //Transform counts to i n d i c e s
13 f o r ( i n t r = 0 ; r < R; r++)
14 count [ r+1] += count [ r ] ;
15 // D i s t r i bu t e
16 f o r ( i n t i = 0 ; i < N; i++)
17 aux [ count [ a [ i ] . charAt (d)]++] = a [ i ] ;
18 //Copy back
19 f o r ( i n t i = 0 ; i < N; i++)
20 a [ i ] = aux [ i ] ;
21 }
22 }
23 }

To sort an array a[] of strings that each have exactly W characters, we do W key-indexed counting sorts:
one for each character positions, proceeding from right to left. We make use of the fact that key-indexed
counting sort is stable, because after each iteration the order is kept among the elements.
Proof 2: LSD string sort uses ∼ 7WN + 3WR array accesses and extra space proportiaonal
to N + R to sort N items whose keys are W-character strings taken from an R-character
alphabet.
The method is W passes of key-indexed counting, except that the aux[] array is initialized just once. The
total is immediate from the code and proof 1.
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3.3 Most-significant digit first

Algoritme 3: MSD string sort

1 pub l i c c l a s s MSD{
2 pr i va t e s t a t i c i n t R = 256 ; // rad ix
3 pr i va t e s t a t i c f i n a l i n t M = 15 ;
4 pr i va t e s t a t i c S t r ing [ ] aux ;
5

6 pr i va t e s t a t i c i n t charAt ( St r ing s , i n t d){
7 i f (d < s . l ength ( ) ) re turn s . charAt (d ) ; e l s e re turn −1;}
8

9 pub l i c s t a t i c void s o r t ( S t r ing [ ] a ){
10 i n t N = a . l ength ;
11 aux = new Str ing [N ] ;
12 s o r t ( a , 0 , N−1, 0 ) ;
13 }
14

15 pr i va t e s t a t i c void s o r t ( S t r ing [ ] a , i n t lo , i n t hi , i n t d){
16 // Cutof f f o r smal l subarrays
17 i f ( h i <= lo + M){
18 I n s e r t i o n . s o r t ( a , lo , hi , d ) ; r e turn ;}
19 //Compute f requency counts
20 i n t [ ] count = new in t [R+2] ;
21 f o r ( i n t i = l o ; i <= hi ; i++)
22 count [ charAt ( a [ i ] , d ) + 2]++;
23 //Transform counts to i n d i c e s
24 f o r ( i n t r = 0 ; r < R+1; r++)
25 count [ r+1] += count [ r ] ;
26 // D i s t r i bu t e
27 f o r ( i n t i = l o ; i <= hi ; i++)
28 aux [ count [ charAt ( a [ i ] , d ) + 1]++] = a [ i ] ;
29 //Copy back
30 f o r ( i n t i = l o ; i <= hi ; i++)
31 a [ i ] = aux [ i − l o ] ;
32 // Recur s ive ly s o r t f o r each charac t e r value
33 f o r ( i n t r = 0 ; r < R; r++)
34 s o r t ( a , l o + count [ r ] , l o + count [ r+1] − 1 , d+1);
35 }
36 }

The basic idea behind MSD string sort is that in typical applications, the strings will be in order after
examining only a few characters in the key. The method quickly divides the array to be sorted into small
subarrays. Because we have a huge number of tiny subarrays, we must make sure to sort them efficiently.
If we do not use a cutoff, we will have 258 (on an ASCII string where R=256) entries in the count[] array
for every sort of a subarray of length 1. With unicode (R=65536) this might be thousands of times slower.
Thus, we use insertion sort for small subarrays. This is a must for MSD string sort.
Proof 3: MSD string sort uses between 8N +3R and ∼ 7wN + 3wR array accesses to sort
N strings taken from an R-character alphabet, where w is the average string length. The
amount of space needed is proportional to R times the length of the longest string (plus N)
in the worst case.
In the best case, MSD sort uses just one pass; in the worst case, it performs like LSD string sort. The
count[] array must be created within sort(), so the total amount of space needed is proportional to R
times the depth of recursion (plus N for the auxiliary array).
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3.4 Three-way string quicksort

Algoritme 4: Three-way string quicksort

1 pub l i c c l a s s Quick3st r ing {
2 pr i va t e s t a t i c i n t charAt ( St r ing s , i n t d){
3 i f (d < s . l ength ( ) ) re turn s . charAt (d ) ; e l s e re turn −1;}
4

5 pub l i c s t a t i c void s o r t ( S t r ing [ ] a ){
6 s o r t ( a , 0 , a . length −1, 0 ) ;}
7

8 pr i va t e s t a t i c void s o r t ( S t r ing [ ] a , i n t lo , i n t hi , i n t d){
9 // Cutof f f o r smal l subarrays

10 i f ( h i <= lo )
11 re turn ;
12 i n t l t = lo , gt = hi ;
13 i n t v = charAt ( a [ l o ] , d ) ;
14 i n t i = l o + 1 ;
15 whi le ( i <= gt ){
16 i n t t = charAt ( a [ i ] , d ) ;
17 i f ( t < v ) exch (a , l t ++, i ++);
18 e l s e i f ( t > v ) exch (a , i , gt−−);
19 e l s e i++;
20 }
21

22 s o r t ( a , lo , l t −1, d ) ;
23 i f ( v >= 0) s o r t ( a , l t , gt , d+1);
24 s o r t ( a , gt+1, hi , d ) ;
25 }
26 }

Three-way string quicksort divides the array into only three parts, so it involves more data movement
than MSD string sort when the number of nonempty partitions is large because it has to do a series
of 3-way partitions to get the effect of the multiway partition. On the other hand, MSD string sort can
create large numbers of (empty) sub-arrays, whereas quicksort always has just three thus quicksort adapts
well to handling equal keys, keys with long common prefixes, keys that fall into a small range, and small
arrays - all situations where MSD string sort runs slowly. Three-way quicksort also needs no additional
space other than the implicit stack to support recursion unlike MSD which requires space for frequency
counts and an auxiliary array.
Proof 4: 3-way quicksort uses ∼ 2Nln(N) character compares on the average to sort an array
of N random strings
First, considering the method to be equivalent to quicksort partitioning on the leading character, then
(recursively) using the same method on the subarrays, we should not be surprised that the total number
of operations is about the same as for normal quicksort - but they are single-character compares, not
full-key compares. Second, considering the method as replacing key-indexed counting by quicksort, we
expect that the NlogR(N) running time from proof 3 should be multiplied by a factor of 2 ln(R) because
it takes quicksort 2Rln(R) stepts to sort R characters, as opposed to R steps for the same characters in
the MSD string sort.
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3.5 Bucket Sort

Algoritme 5: Bucket sort

1 pub l i c c l a s s Bucket{
2 pub l i c s o r t ( Item [ ] a , i n t k ){
3 i n t N = a . l ength ;
4 Item [ ] buckets = new Item [ k ]
5

6 //Divide e lements in to buckets
7 f o r ( i n t i = 0 ; i < N; i++)
8 buckets [ a [ i ] /max( a ) ] . append ( a [ i ] ) ;
9

10 // Sort buckets
11 f o r ( i n t = 0 ; i < k ; i++)
12 I n s e r t i o n . s o r t ( buckets [ i ] ) ;
13

14 //Concatenate buckets
15 f o r ( i n t i = 0 ; i < k ; i++)
16 f o r ( i n t j = 0 ; j < buckets [ i ] . l ength ; j++)
17 a [ i ∗ j + j ] = buckets [ i ] [ j ] ;
18 }
19 }

Bucket sort divides the input range (n elements) into k buckets, and then uses a comparison-based sort on
each bucket. In the worst case, everything gets put into one bucket, giving us no increase in performance.
In the best case, the input is divided evenly over the bucket, reducing the problem size for each bucket to
n/k + ∼ n. On the average case, if we assume uniform random input, we will get the same results as the
best case. Bucket sort does have some tradeoffs:
→ Only works well for evenly distributed inputs
→ Choose buckets well
→ Requires ∼ n extra space
→ n elements divided over k buckets plus the original array

3.6 Examenvragen

Een aantal sorteeralgoritmes hebben de eigenschap ”stabiel”te zijn.

• Wat wordt hiermee bedoeld?
Als verschillende elementen in een array dezelfde key hebben, zullen ze in de gesorteerde array in
dezelfde volgorde staan.

• Welke sorteeralgoritmes die we behandeld hebben in de lessen zijn stabiel?
Key-indexed counting,

• Waarom is stabiliteit een belangrijke eigenschap van een sorteeralgoritme?

• Kan een niet-stabiel sorteeralgoritme steeds stabiel gemaakt worden?

Hoe zou je counting sort kunnen wijigen zodat het ook zou werken met data die geen
positieve integers zijn? Bvb ook negatieve integers behandelen? Of ook getallen met deci-
male fracties (1.5, 2.5, 3.5, ... ?). Welke voorwaarden moeten er gelden voor de te sorteren
data?
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4 Les 6: Stacks, Queues & Hash tabellen

4.1 Stacks

→ Remove the item the most recently added.
Implemented as a linked list; pop() and push() run in constant time. It can also be implemented with an
array: but then a problem arrises: what to do when the array is full. We must then make a new, bigger
array and copy all item to that new array (big cost!). When we always increase the array size by 1, we
get a cost of ∼ N2(= N + 2(1 + 2 + ... + N − 1). Instead, we double the size when the array is full (cost
is ∼ 3N(= N + (1 + 2 + 4 + 8 + ..+N/2)). When the array is only 1/4th full, we halve the array size (so
that the array is always between 25% and 100% full is).
Note: This protects against cases where you use ”pop-push-pop-push-...”.
→ Linked list implementation
→ Every implementation takes constant time in the worst case
→ Uses extra time and space to deal with the links
→ Dynamic array implementation
→ Every operation takes constant amortized time
→ Less wasted space

4.2 Queues

→ Remove the item the least recently added.
Queues use the same principles as stacks and can also be implemented with either a linked list or a
dynamic array.

4.3 Hash tabellen

4.3.1 Keys omzetten naar indices

De bedoeling van een hashfunctie is dat ze een sleutel kan omzetten naar een index voor de array. Gegeven
een array van lengte M moet onze hash-functie dus een integer in het bereik [0, M-1] teruggeven. De meest
gebruikte methode is modulair hashen: we kiezen M opdat dit een priemgetal is en onze hash wordt dan
berekend door de modulo van k/M te berekenen: k % M. Strings worden bekeken als grote integers als
hun hashcode berekend wordt. Er zijn echter nog wel problemen met hashing.
Problem 1: No deterministic hash function can uniformly and independently distribute keys
among the integer values between 0 and M-1.

4.3.2 Hashing with seperate chaining

Hashing met seperate chaining is een manier om hash collisions op te lossen: wanneer twee waarden
dezelfde hash hebben. Bij seperate chaining worden de botsende elementen aan elkaar gelinkt. Als M
groot genoeg is, is onze lijst steeds klein genoeg om geen performance overhead te hebben. Als we N keys
hebben, zal elke lijst gemiddeld N/M elementen groot zijn.

4.3.3 Hashing with lineair probing

Another approach to implementing hashing is to store N key-value pairs in a hash table of size M > N,
relying on empty entries in the table to help with collision resolution. These mehtods are called open-
addressing hashing methods. Linear probings checks the next entry in the table if there is a collision (by
incrementing the index). Linear probing is characterized by identifying three possible outcomes:

• Key equal to search key: search hit

• Empty position (null key at indexed position): search miss

• Key not eaqual to search key: try next entry
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5 Les 7: Priority Queues & Balanced Trees

5.1 Priority Queues

Priority Queus are queues that return the element with the highest (or lowest) priority in the queue.
These can be implemented in a number of ways, but we will discuss a binary heap. A binary heap is a
heap-ordered binary tree. (Note: a binary tree has the property that the height of a tree with N nodes
is always 1 + log2(N)). In the binary heap, keys are stored in nodes. The key in a node is never smaller
than the keys in the children. If we use an array representation, we take the nodes in level order and do
not need explicit links. We use the array indices to move through a tree: the parent of node k is at k/2
and the children of node k are at 2k and 2k+1. (We assume that the largest key is at a[1].) If a node’s
key is replaced with a key larger than its parent, we simply swap them until order is restored. Insertion
and deletion follow the same principles. They use at most 2log2(N) comparisons.
Building a heap uses ∼ Nlog2(N) comparisons (= log2(1) + log2(2) + ...+ log2(N) cfr stirling approxima-
tion).

Algoritme 1: Heap Priority Queue

1 pub l i c c l a s s MaxPQ<Key extends Comparable<Key>>{
2 pr i va t e Key [ ] pq ;
3 pr i va t e i n t N = 0 ;
4

5 pub l i c MaxPQ( in t maxN){
6 pq = (Key [ ] ) new Comparable [maxN+1];}
7

8 pub l i c boolean isEmpty (){
9 re turn N == 0;}

10

11 pub l i c i n t s i z e ( ){
12 re turn N;}
13

14 pub l i c void i n s e r t (Key v){
15 pq[++N] = v ;
16 swim(N) ;
17 }
18

19 pub l i c Key delMax (){
20 Key max = pq [ 1 ] ; // Retr i eve max key from top
21 exch (1 , N−−); //Exchange with l a s t item
22 pq [N+1] = nu l l ; //Avoid l o i t e r i n g
23 s ink ( 1 ) ; //Restore heap property
24 re turn max ;
25 }
26

27 pr i va t e void swim( in t k ){
28 whi le ( k > 1 && l e s s ( k/2 , k ) ){
29 exch (k/2 , k ) ;
30 k = k /2 ;
31 }
32 }
33

34 pr i va t e void s ink ( i n t k ){
35 whi le (2∗k <= N){
36 i n t j = 2∗k ;
37 i f ( j < N && l e s s ( i , j +1)) j++;
38 i f ( ! l e s s (k , j ) ) break ;
39 exch (k , j ) ;
40 k = j ;
41 }
42 }
43 }

5.2 Binary and Balanced Search Trees (BSTs)

5.2.1 Binary Search Trees

Proof 1: Search hits in a BST built from N random keys require 1.39Nlog2(N) compares on
average.
The number of compares used for a search hit eding at a given node is 1 plus the depth. Adding the
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depths of all nodes, we get a quantity known as the internal path length of the tree. Thus, the desired
quantity is 1 plus the average internal path length of the BST. Let CN be the internal path length of a
BST built from inserting N randomly ordered distinct keys, so that the average cost of a search hit is
1 + CN/N . We have C0 = C1 = 0 and for N > 1 we can write a recurrence relationship that directly
mirrors the recursive BST structure: CN = N − 1 + (C0 +CN1

)/N + (C1 +CN2
/N) + ...+ (CN1

+C0)/N
The N-1 term takes into account that the root contributes 1 to the path length of each of the other N-1
nodes in the tree; the rest of the expression accounts for the subtrees, which are equally likely to be any
of the N sizes. After rearranging terms, this recurrence is nearly identical to the one that we solved for
quicksort, and we can derive the approximation CN ∼ 2Nln(N) = 1.39Nlog2(N). Insertions and search
misses take one more compare on the average.

5.2.2 Balanced Search Trees

Balanced Search Trees are Binary Search Trees whose performance is guaranteed to be logarithmic, no
matter what sequence of keys is used to construct them. In an N-node tree, we would like tthe height to
be ∼ log2(N) so that we can guarantee that all searches can be completed in ∼ log2(N) compares, just
as for binary search. We will, however, relax the perfect balance requirement a bit to provide guaranteed
logarithmic performance for all operations except range search. We will first allow the nodes in our trees
to hold more than one key. We will thus now allow 3-nodes (which hold three links and two keys). The
middle link are the values between the two keys. A perfectly balanced 2-3 search tree is one whose null
links are all the same distance from the root.
Proof 2: Search and insert operations in a 2-3 tree with N keys are guaranteed to visit at
most log2(N) nodes
The height of an N-node 2-3 tree is between [log3(N)] = [(log2(N))/(log2(3))] (if the tree is all 3-nodes)
and [log2(N)] (if the tree is all 2-nodes).
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5.2.3 Red-Black Trees

In an RB Tree, we represent the 2-3 tree as a BST. We use the internal left-leaning links as ’glue’ for
three nodes. These left-leaning links are called the red links. A node can have atmost one red link. Every
path from the root to a null link has the same amount of black links (the tree is black-balanced). Every
node has one field to determine whether the left link is a red link.
Note: check the powerpoints for insertion/deletion of nodes!

5.2.4 Overview of time complexity

Implementation
Guarantee Average ordered

iteration?search insert delete search hit insert delete
sequential search
(linked list)

N N N N/2 N N/2 no

binary search
(ordered array)

log2(N) N N log2(N) N/2 N/2 yes

BST N N N 1.39log2(N) 1.39log2(N) ? yes
2-3 tree clog2(N) clog2(N) clog2(N) clog2(N) clog2(N) clog2(N) yes
red-black BST 2log2(N) 2log2(N) 2log2(N) 1.00log2(N) 1.00log2(N) 1.00log2(N) yes

5.3 Examenvragen

1. Geef een bespreking van de insert- operaties in een 2-3 boom.
2. Stel dat we ternaire heaps (t.t.z. een heap met 3 kinderen per knoop) zouden gebruiken
voor heapsort. Op welke manier zou dit de tijdscomplexiteit bëınvloeden?
3. Vraag 7 examen september 2016 (Young-tabel). Dit is een mooie illustratie hoe heaps
niet noodzakelijk in boomstructuren moeten voorgesteld worden, maar bvb. ook een matrix-
vorm mogelijk is.
4. Vraag 8, examen juni 2015.
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6 Les 8: Greedy algorithms

Greedy algorithms make the choice that seems best now. They are used for calculating a route, or com-
pressing data.
Proof 1: no algorithm can compress every bitstring
Proof by contradiction: suppose that you have a universal data compression algorithm U that can
compress every bitstring. This would implicate that you can compress bitstring B0 to a shorter bitstring
B1, which can then in turn be compressed to an even smaller bitstring B2. Repeat this process until the
length is 1. This would mean that every bitstring could be compressed into 1 byte.
Proof by counting: suppose that your algorithm can compress all 1000-bit strings. There are 21000

possible bitstrings with 1000 bits. Only 1 + 2 + 4 + ... + 2998 + 2999 = 21000 − 1 bits can be encoded with
≤ 999 bits.
There are several methods to encode data. One of these is Run-Length encoding, in which we use 4-
bit counts to represent alternating runs of 0s and 1s. A more widely used encoding system is Huffman
encoding. We pick the representation of the characters depending on the specific text. No code (repre-
sentation) can be a prefix for another code. We construct a prefix tree by greedily linking the two least
frequently used characters together. This forms a new character with a frequency equal to the sums of the
individual frequencies. Because this implementation requires a PriorityQueue, we get a time complexity
of ∼ nlog2(N).
Proof 2: Proof of optimality of Huffman encoding
Lemma 1: any optimal code tree is complete (→ nodes with one child are impossible)
Lemma 2: there exists an optimal subtree in which the two least frequent letters are siblings at the
maximum depth
Every leaf node has a sibling, otherwise the tree would not be complete (lemma 1).
The two least frequent letters x and y must be at the maximum depth. If not, there must be a letter w at
maximum depth that occurs more frequently, and that would not be optimal (because w can be switched
with x or y).
If x and y are not siblings, swap y with x’s sibling. The number of bits for all letters remains unchanged.
We prove the optimality with induction
Base case: only two characters
Assume we can compute the optimal code tree for fewer than r symbols.
TH is the code tree for set of symbols (s1, f1), ..., (sr, fr)
→ si and sj are the first two symbols chosen (lowest frequencies)
→ si and sj are replaced by symbol (s∗, fi+fj)

→ Algorithm then computes tree with r-1 symbols: this results in tree T ∗H .
→ W(TH) = W(T ∗H) + (fi + fj)

Consider the most optimal tree T for (s1, f1) ... (sr, fr)
→ si and sj must be at the deepest level and siblings (lemma 1 and 2)
→ Make a new tree T ∗ by merging si and sj into their parent (s∗, fI + fj)
→ W(T) = W(T ∗) + (fi + fj)

Induction hypothesis: T ∗H is optimal for r-1 letters
→ W (T ∗H) <= W (T ∗)

So:
→ W (TH) = W (T ∗H) + (fi + fj)
→ <= W (T ∗) + (fi + fj)
→ <= W (T )

Hence, TH is a most optimal tree for r letters.

6.1 Examenvragen

1. Gegeven één of andere string, stel de Huffman coderingsboom op voor deze string. 2.
Hoe ziet de Huffman codering er uit indien de frequentie van characters zich verhoudt tot de
Fibonnaci getallen? 3. Bewijs dat Huffman-codering optimaal is, t.t.z. de kortst mogelijke
gecodeerde string oplevert voor een gegeven te coderen string.
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7 Les 9: Minimal Spanning Trees & Shortest Path

7.1 Minimal Spanning Trees

A graph is a set of vertices connected pairwise by edges. In a minimum spanning tree, we try to find the
spanning tree (a subgraph T that is connected and acyclic) of an undirected graph G with positive edge
weights with the minimum weight. For data representation of a graph, we have a number of options:
→ Maintain a list (linked list or array) of the edges
→ Store the edges in a V-by-V boolean array (arr[v][w] = arr[w][v] = true)
→ Maintain a vertex-indexed array of lists (array where the vertex is the

index, each array entry is a list of all the verticies vertex i is connected to)
Proof 1: the cut property
The cut property assumes that the edge weights are distinct and that the graph is connected. It stipulates
that given any cut, the crossing edge of minimum weigth is in the MST. A cut in a graph is a partition
of its vertices into two nonempty sets and a crossing edge connects a vertex in one set with a vertex in
the other.
Proof
Let e be the min-weiht crossing edge in cut
→ Suppose e is not in the MST
→ Consider the graph of adding e to MST
→ This graph has a cycle that contains e
→ Some other edge f in this cycle must be a crossing edge of the cut

→ Removing f and adding e is also a spanning tree
→ Since weight of e is less than the weight of f, that spanning tree has lower weight

Contradiction: e must belong to the MST

7.1.1 Greedy MST algorithm

→ Start with all edges colored gray
→ Find a cut with no black crossing edges
→ color its min-weight edge black
→ Continue until V-1 edges are colored black
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7.1.2 Prim’s algorithm

→ Start with vertex 0 and greedily grow tree T
→ At each step, add to T the min-weight edge with exactly one endpoint in T

Correctness of Prim’s algorithm: all vertices already in the tree define a cut (→ vertices in the tree vs
vertices not in the tree). The minimum connecting edge is part of the MST (this is what Prim’s algo
does!)
Prim Lazy implementation: a PriorityQueue of edges with at least one endpoint in T. We extract min to
determine next edge e=vw to add to T
→ Disregard if both endpoints v and w are in T
→ Otherwise, let v be the vertex not in T: add any edge incident to v to PQ

and add v to T
Lazy Prim analysis: There are at most E edges in the PQ. Deletion and insertion thus takes about
∼ clog2(E) and the space needed for the PQ is ∼ E. The time is thus proportional to Elog2(E) and the
space is proportional to E. In practice, however, the PQ is typically much smaller than E. A problem
with Lazy Prim, however, is that obsolete edges are kept on the PQ. We will fix this by implementing the
following improvements:
→ Maintain a PQ of vertices connected by an edge to T (the priority of vertex v = weight of shortest

edge connecting v to T)
→ Delete min vertex v and add associated edge e = vw to T
→ Update PQ by considering all edges e = vx incident to v
→ ignore if x is already in T
→ if x is not yet in PQ, add x to PQ
→ decrease priority of x if vx becomes shortest edge connecting x to T

We now get the following running time for Prim: space ∼ V and time ∼ Elog2(V ). In practice, for sparse
graphs E ∼ V

7.1.3 Kruskal’s algorithm

Kruskal’s algorithm is a special case of the greedy MST algorithm. We consider the edges in ascending
order of weight, and add the next edge to the tree T unless doing so would create a cycle. Suppose
Kruskal’s algorithm selects edge e = vw. The cut is the set of vertices connected to v (or w) in tree T.
No crossing edge is black (because there are no loops) and no crossing edge has a lower weight. Kruskal
runs in ∼ Elog2(E) time. We implement this by maintaining a set of all vertices already in T, and adding
loop detection. It is generally slower than Prim’s algorithm (there are more edges than vertices).
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7.2 Shortest path

7.2.1 Shortest Path Tree

In the shortest path problem, we represent intersections by vertices and roads by edges. The edges have
weights and directions. This problem has several variants:

• Source-sink: from one vertex (source) to another (sink)

• Single source: from one vertex to every other

• All pairs: between all pairs of vertices

Edge weights must be non-negative, arbitrary and euclidian. There can be no (negative) cycles. We
assume that there exists a shortest path from s to each vertex v. We observe that a shortest path tree
(SPT) solution exists. We can represent the SPT with two vertex-indexed arrays:
→ distTo[v] is the length of the shortest path from s to v
→ edgeTo[v] is the last edge on the shortest path from s to v

Edge relaxation is a basic operation. We relax the edge e = v → w. distTo[v] is the length of the shortest
known path from s to v, distTo[w] is the length of the shortest known path from s to w and edgeTo[w] is
the last edge on the shortest known path from s to w. If e = v → w gives a shorter path to w through v,
we update distTo[w] and edgeTo[w]. We present a very generic SPT algorithm:
1. Initialize distTo[s] = 0 abd distTo[v] = ∞ for all v 6= s
2. Repeat until the optimality conditions are satisfied (the shortest path from each v to s has been
computed): relax any edge
Optimality conditions: distTo[] are the shortest path distances from s if and only if:
→ for each vertex v, distTo[v] is the length of some path from s to v
→ for each edge e = v → w, distTo[w] ≤ distTo[v] + e.weigth()

Proof:
→ Throughout the algorithm, distTo[v] is the length of a simple path from s to v and edgeTo[v] is the

last edge on the path
→ Each succesful relaxation decreases distTo[v] for some v
→ distTo[v] can decrease at most a finite number of times
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7.2.2 Dijkstra’s algorithm

We consider vertices in increasing order of distance from s (non-SPT vertex with the lowest distTo[] value).
We then add the vertex to the SPT and relax all edges starting from that vertex.
Proof: Each edge e = v → w is relaxed exactly once (when v is added to the SPT), leaving distTo[w] ≤
distTo[v] + e.weight(). Inequality holds until the algorithm terminates because distTo[w] cannot increase
and distTo[v] will not change (because we have non-negative wieghts and v is not relaxed again). Thus,
upon termination, shortest-path optimality conditions hold. This algorithm is almost identical to Prim’s
algorithm! It also depends on the type of priority queue used. The priority queue contains v vertices and
every edge requires a ’decrease key’ operation in the queue, thus the total time complexity is ∼ Elog2(V ).

7.2.3 Acyclic graphs

For acyclic graphs, a better solutions is possible: we use a topological sorting algorithm. We consider all
vertices in topological order, and relax all edges starting at the source vertex. The topological sorting
algorithm computes the SPT in any edge-weighted Directed Acylic Graph in ∼ E + V
Proof: same as Dijkstra

7.2.4 Bellman-Ford

The Bellman-Ford algorithm works, unlike Dijkstra’s algorithm, with negative weights. In each pass, it
relaxes all edges and it makes V passes. The idea behind it is that after pass i, we’ve found the shortest
path containing at most i edges. It runs in ∼ EV time. If distTo[v] does not change during pass i, we
do not need to relax any edge starting from v in pass i+1. To implement this, we maintain a queue of
vertices whose distTo[] has changed and reuse the values from previous iterations. If after V-1 passes,
there are still vertices on the queue, we know that there is a negative cycle.

7.3 Examenvragen

1. Gegeven één of andere grafe, geef de volgorde waarin edges/vertices worden toegevoegd
in Kruskal/Prim/Dijkstra/..., of geef de toestand van de prirotiy queue bij Kruskal/Prim/-
Dijkstra nadat een specifieke vertex toegevoegd is aan de MST of SPT.
2. Leg uit: algoritme van Prim/Kruskal/DIjkstra. Zou je dit algoritme beschouwen als
een greedy algoritme (argumenteer), dan wel als een dynamisch (dynamische algoritmen
komen aan bod in les 10) algoritme (argumenteer), beide (argumenteer), of geen van beide
(argumenteer).
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8 Les 10: String Search

8.1 Brute-force substring search

Algoritme 1: Brute-force substring search

1 pub l i c s t a t i c i n t search ( St r ing pat , S t r ing txt ){
2 i n t M = pat . l ength ;
3 i n t N = txt . l ength ;
4 f o r ( i n t i = 0 ; i <= N − M; i++){
5 i n t j ;
6 f o r ( j = 0 ; j < M; j++)
7 i f ( txt . charAt ( i + j ) != pat . charAt ( j ) )
8 break ;
9 i f ( j == M) return i ; // found

10 }
11 re turn N; //not found
12 }

Proof 1: Brute-force substring search requires ∼ NM character compares to seach for a pattern of length
M in a text of Length N, in the worst case
Proof: A worst-case input is when both pattern and text are all As followed by a B. Then for each of
the N - M + 1 possible match positions, all the characters in the pattern are checked against the text, for
a total cost of M(N - M + 1). Normally M is very small compared to N, so the total is ∼ NM .

8.2 Knuth-Morris-Pratt

The basic idea behingd the KMP algortihm is that whenever we detect a mismatch, we already know some
of the characters in the text (since they matched the pattern characters prior to the mismatch). We can
take advantage of this information to avoid backing up the text pointer over all those known characters.
The Deterministic Finite State Automaton (DFA) The DFA is an abstract string-searching machine
with a finite number of states (including start and halt). There is exactly 1 transition for each char in
the alphabet. It accepts if a sequence of transitions leads to a halt state.

After reading in txt[i], the state-number is the number of chars that have been matched. The differences
from the brute force implementation are that the text pointer i never decrements and that dfa[][] needs
to be precomputed from the pattern.
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Algoritme 2: KMP

1 pub l i c c l a s s KMP{
2 pr i va t e St r ing pat ;
3 pr i va t e i n t [ ] [ ] dfa ;
4

5 pub l i c KMP( St r ing pat ){
6 t h i s . pat = pat ;
7 i n t M = pat . l ength ( ) ;
8 i n t R = 256 ;
9 dfa = new in t [R ] [M] ;

10 dfa [ pat . charAt ( 0 ) ] [ 0 ] = 1 ;
11 f o r ( i n t X = 0 , j = 1 ; j < M; j++){
12 f o r ( i n t c = 0 ; c < R; c++)
13 dfa [ c ] [ j ] = dfa [ c ] [X ] ;
14 dfa [ pat . charAt ( j ) ] [ j ] = j +1;
15 X = dfa [ pat . charAt ( j ) ] [X ] ;
16 }
17 }
18 pub l i c i n t search ( St r ing txt ){
19 i n t i , j , N = txt . l ength ( ) , M = pat . l ength ( ) ;
20 f o r ( i = 0 , j = 0 ; i < N && j < M; i++)
21 j = dfa [ txt . charAt ( i ) ] [ j ] ;
22 i f ( j == M) return i − M;
23 e l s e re turn M;
24 }
25 }

Proof 2: KMP substring search accesses no more that M + N characters to search for a pattern of length
M in a text of length N.
Proof: immediate from the code: we access each pattern character once when computing dfa[][] and
each text character once (in the worst case) in search().
Building the DFA from a pattern:

• Math transition
If in state j and next char c == pat.charAt(j), then go to state j+1

• Mismatch transition
If in state j and next char c != pat.charAt(j), then the last j characters of input are pat[1..j-1]
followed by c

The KMP constructs dfa[][] in time and space proportional to RM, with R the size of the alpabet

8.3 Boyer-Moore

Boyer-Moore scans the characters in the pattern from right to left (you can skip M text characters when
finding one not in the pattern).

To implement the mismatched character heuristic, we use an array right[] that gives, for each character
in the alphabet, the index of the rightmost occurence in the pattern (or -1 if the character is not in the
pattern). This value tells us precisely how much to skip if that char appears in the tet and causes a
mismatch during the string search.
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Algoritme 3: Boyer-Moore

1 pub l i c c l a s s BoyerMoore{
2 pr i va t e i n t [ ] r i g h t ;
3 pr i va t e St r ing pat ;
4

5 BoyerMoore ( S t r ing pat ){
6 t h i s . pat = pat ;
7 i n t M = pat . l ength ( ) ;
8 i n t R = 256 ;
9 r i g h t = new in t [R ] ;

10 f o r ( i n t c = 0 ; c < R; c++)
11 r i g h t [ c ] = −1; //−1 f o r chars not in pattern
12 f o r ( i n t j = 0 ; j < M; j++) // r ightmost po s i t i o n f o r
13 r i g h t [ pat . charAt ( j ) ] = j ; // chars in the pattern
14 }
15

16 pub l i c i n t search ( St r ing txt ){
17 i n t N = txt . l ength ( ) ;
18 i n t M = pat . l ength ( ) ;
19 i n t sk ip ;
20 f o r ( i n t i = 0 ; i <= N−M; i += sk ip ){
21 sk ip = 0 ;
22 f o r ( i n t j = 0 ; i <= N−M; i += sk ip )
23 i f ( pat . charAt ( j ) != txt . charAt ( i + j ) ){
24 sk ip = j − r i g h t [ txt . charAt ( i + j ) ] ;
25 i f ( sk ip < 1) sk ip = 1 ;
26 break ;
27 }
28 i f ( sk ip == 0) return i ;
29 }
30 re turn N;
31 }
32 }

Proof 3: on typical inputs, substring search with the Boyer-Moore mismatched character heuristic uses
∼ N/M character compares to search for a pattern of length M in a text of length N
Sketch of the proof: this result can be proved for various random string models, but such models tend
to be unrealistic, so we shall skip the details. In many practical situations it is true that all but a few of
the alphabet appear nowhere in the pattern, so nearly all ompares lead to M characters being skipped,
which gives the stated result.
In the worst case, this becomes MN. With KMP-like rules to avoid repetition, this becomes linear ∼ N .

8.4 Rabin-Karp

The basic idea behind Rabin-Karp fingerprint search is too compute a hash function for the pattern and
then look for a match by using the same hash function for each possible M-character substring. If we find
a text substring with the same hash value as the pattern, we can check for a match. A straight-forward
implementation would be much slower than bruteforcing, but Rabin and Karp showed that it is easy to
compute hash functions for M-character substrings in constant time (after some preprocessing), which
leads to a linear-time substring search in practical situations.

(a + b)modQ = ((amodQ) + (bmodQ))modQ

(a ∗ b)modQ = ((amodQ) ∗ (bmodQ))modQ

Two variants:

• Las Vegas
If hash is equal, then check pattern, 100% correct and extremely likely to run in linear time (but
worst case MN)

• Monte Carlo
If hash is equal, we assume pattern is equal as well, always runs in linear time, but probability of
1/Q for mismatch
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9 Les 11: Dynamic programming (look-up table)

The basic idea behind dynamic programming is that a problem can be divided into subproblems, and
that an optimal solution to subproblems leads to an optimal solution for the problem. Many subproblems
share the same subsubproblems etc, and theus we can store the results of the subsubproblems in a look-up
table and re-using the results. This can significantly reduce the time-complexity for finding a solution to
the problem.

9.1 Examples

9.1.1 Fibonacci

1 pub l i c s t a t i c f i b on a c c i (n){
2 i n t [ ] f i b = new in t [ n ] ;
3 f i b [ 0 ] = 0 ;
4 f i b [ 1 ] = 1 ;
5 f o r ( i = 2 ; i <= n ; i++)
6 f i b [ i ] = f i b [ i −1] + f i b [ i −2] ;
7 re turn f i b [ n ]
8 }

9.1.2 Rod cutting

Another common example is rod cutting: start with a rod of integer length n and cut it into several smaller
pieces of integer length. What is the best possible cut with the highest value? There are 2n−1 possibilities
for a rod of length n. A first strategy is cutting the rod in 2 pieces (n-1 possibilities) and recurse on
the righmost piece. The same problem (the same rod length) is re-computed often. Another strategy is
bottom-up cutting: compute the value of a rod of length 1 and store it in a table. Then, compute a value
of a rod of length 2 (you can only cut it into rods of length 1. The value of a rod of length 1 is already
computed, so there is no recursion). Then compute the value of longer rods up to length n successively.
The optimal values of shorter rods are always computed first so there is no recursion.

9.1.3 Coins in a line

There are an even number of coins, and each coin has a value. Players remove a coin in turns, eiher the
leftmost or the rightmost coin. The player that has collected the highest value, wins. We number all coins
and store the value of all coins in an array V[]. Given a row of coins i to j, player 1 can either gain V[i]
or V[j]. Mij is the maximum value of coins taken by player 1, for coins numbered i to j, assuming player
2 plays optimal. Player 1 must choose based on the following:

• If j = i+1 (only 2 coins left), pick the largest of V[i] and V[j].

• Otherwise (more than 2 coins left)
→ If player 1 picks coin i, the gain for player 1 is:

min(Mi+1,j−1, Mi+2,j) + V[i]. min(Mi+1,j−1, Mi+2,j) is the gain for player 1 after
player 2 has picked either j or i+1.
→ If player 1 picks coin j, the gain for player 1 is:

min(Mi,j−2, Mi+1,j−1) + V[i].

For i = 1, 2, ..., n− 1: Mi,i+1 = max(V[i], V[i+1])
If j > i + 1: Mij = maxmin(Mi+1,j−1, Mi+2,j) + V[i], min(Mi,j−2, Mi+1,j−1) + V[j]
j − i + 1 is always even: initialize table (j-i+1 = 2), compute for all j-i+1 = 4, ... → quadratic time to
compute entire table
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9.2 Longest Common Subsequence (LCS) problem

A subsequence of string X is any string of the form
X[i1]X[i2]X[i3]X[i4]X[i5] with ij < ij+1 for j = 1, ..., k − 1
Caution! subsequence 6= substring
e.g.: AAAG is a subsequence of CGATAATTGAGA
The LCS problem is that when given 2 strings, what is their longest common subsequence? A nâıve solu-
tion to this problem is enumerating all possible subsequences of string X (length n) (thus 2n possibilities)
and checking whether it is a subsequence of string Y (lenght m) which can be computed in ∼ m time.
The total time is then proportional to 2nm. We can solve this problem by using dynamic programming:
Given strings X (length n) and Y (length m) and the length LCS of X[0 .. i] and Y[0 .. j] = L[i, j]. We
must now try to find a way to express L[i, j] as a function of smaller subproblems.
Case 1: suppose X[i] = Y[j] = c. The LCS of X[0..i] and Y[0..j] ends with c.
Proof: Suppose the claim is not true. Then the tlast character of the LCS is different from c. We can
then extend the LCS by 1 by adding c. If the last character of the LCS equals c, but the position does
not match position i or j in X or Y. Then we can change the position to i or j.
Case 2: suppose X[i] <> Y[j]. The LCS cannot include both X[i] and Y[j]. It can end on X[i], Y[j] or
neither but not on both. Hence:

L[i, j] = maxL[i− 1, j], L[i, j − 1]ifX[i] 6= Y [j]

So:
L[i, j] = L[i− 1, j − 1] + 1ifX[i] = Y [j]

L[i, j] = maxL[i− 1, j], L[i, j − 1]ifX[i] 6= Y [j]

The boundary cases are:
L[i,−1] = 0, L[−1, j] = 0

The algorithm fills out table L, starting at L[0, 0] and working up. Boundary cases are not explicitly
stored in the table. The time complexity is ∼ nm.
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9.3 Optimal Binary Search Trees

Given a sequence k1 < k2 < ... < k3 of n sorted keys, each key ki has search probability pi. We want to
build a binary search tree with minimum expected search cost. The cost for a search is the number of
items examined. For key ki the cost = depth(ki)+1.
Some observations: the optimal BST may not have the smallest height or the highest-probability key at
root. For searches not in the tree, we use dummy nodes di with ki < di < ki+1. Each dummy value di
has probabilty qi of occuring in search. The average search kost can then be determined:

cost =

n∑
i=1

(depth(ki) + 1) · p +

n∑
i=0

(depth(di) + 1)qi

= 1 +

n∑
i=1

depth(ki) · pi +

n∑
i=0

depth(di) · qi

A subtree of a BST contains keys in a contiguous range: ki, ..., kj for some 1 ≤ i ≤ n and di−1, ..., dj . If
T is an optimal BST and T contains subree T’ with keys ki, ..., kj then T’ must be an optimal BST for
keys ki, ..., kj . The cost for on optimal search tree on ki, ..., kj = c(i, j).
The trivial case: j = i-1 (empty tree); only dummy value di; hence c(i, i-1) = qi−1
At least one value k: one of the keys in ki, ..., kj (e.g. kr where i ≤ r ≤ j) must be root of an optimal
subtree. The left subtree of kr contains ki, ..., kr−1. The right subtree of kr contains kr+1, ..., kj . The
optimal left subtree has cost c(i, r-1). The optimal right subtree has cost c(r+1, j). When combined, the
depth of each node in the subtrees increases by 1. The cost of the subtree increases by the sum of all
probabilities in the subtree.

c(i, j) = pr + (c(i, r − 1) + w(i, r − 1) + c(r + 1, j) + w(r + 1, j))

The cost of all probabilities w(i, j) =
∑j

l=i pl +
∑j

l=i−1 ql. Also: w(i, j) = w(i, r-1) + pr + w(r+1, j).
Hence:

c(i, j) = pr + (c(i, r − 1) + w(i, r − 1) + c(r + 1, j) + w(r + 1, j))

= c(i, r − 1) + c(r + 1, j) + w(i, j)

Since we do not know the optimal r, we need to take the minimum over all possible r:

c(i, j) =

{
qi−1
minc(i, r − 1) + c(r + 1, j) + w(i, j)

met i ≤ r ≤ j To implement this, we use the following 2D-arrays:

• c[1..n+1, 0..n] for storing the costs, using only intries in c for which j ≥ i-1

• w[1..n+1, 0..n] because we do not want to recompute them every time. w[i,i-1] = qi−1 and w[i,j] =
w[i,j-1] + pj + qj

• root[i,j] stores optimal r for subtree i..j
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