Exam Functional Analysis - January 2025

Problem 1

We denote by *H* the Hilbert space $L^2([1,2],\lambda)$ where λ is the Lebesgue measure on [1,2]. Define $T: H \to H$ by $(Tf)(x) = \frac{f(x)}{x}$

- (a) Show that T is a bounded operator.
- (b) Show that T does not have eigenvalues.
- (c) Prove that $\sigma(T) = [1/2, 1]$. **Hint:** let $t \in]1, 2[$ and define $g(x) = (xt)^{-1}$ for $x \in [1, 2]$. Prove that if $(T t^{-1}I)f = g$ for some function $f: [1, 2] \to \mathbb{C}$ then $f \notin L^2([1, 2], \lambda)$.
- (d) Let $(e_n)_{n \in \mathbb{N}}$ be an orthonormal basis for H and let $S \in B(H)$ satisfy $Se_n = \frac{1}{n+1}e_{n^2}$. Prove that H admits an orthonormal basis of eigenvectors of S^*TS .

Problem 2

Let H be a Hilbert space and let $T \in B(H)$ be a self-adjoint operator satisfying $T^3 = T$. Prove that $\sigma(T) \subseteq \{-1, 0, 1\}$.

Problem 3

Let X be an infinite dimensional Banach space.

- (a) Argue that the unit ball $X_1 = \{x \in X \mid ||x|| \le 1\}$ is closed in the weak topology.
- (b) Prove that the closure of the set $\{x \in X \mid ||x|| = 1\}$ in the weak topology is X_1 . **Hint:** Since X is infinite dimensional the kernel of any linear map $X \to \mathbb{C}^n$ must be non-trivial.
- (c) Let $B \subset X^* \setminus (X^*)_1$ be a non-empty convex set. Assume that for every $\psi \in X^{**}$ and every $\varepsilon > 0$ there exists $\omega \in X^*$ and $b \in B$ with $||\omega|| \le 1$ and $|\psi(\omega b)| < \varepsilon$. Prove that B is not closed in the weak* topology.

Problem 4

Let X and Y be Banach spaces.

- (a) Let $T: X \to Y$ be a surjective linear map bounded from below, i.e. there exists a $\delta > 0$ such that $||Tx|| \ge \delta ||x||$. Prove that T is continuous.
- (b) Assume that $f: X \times Y \to \mathbb{C}$ is a map such that for each $x \in X$ the map $y \mapsto f(x, y)$ is bounded and linear and for each $y \in Y$ the map $x \mapsto f(x, y)$ is bounded and linear. Prove that there exists a k > 0 such that $|f(x, y)| \le k||x|| \cdot ||y||$ for all $x \in X$ and $y \in Y$.