Name_

Exam Advanced Nuclear Physics

11/01/2016

Ouestion: Nuclear Reactions

These four question will be evaluated on 20 points. You require a minimum of 7/20 on this part to pass the course. The points will be rescaled to a weight of 6 towards your final grade for the course.

You are not allowed any book or notes. You may use a calculator and the given list of formulas for this part of the examination. Please use the attached sheets of papers for your answer; any additional sheet will be discarded.

Consider Figures 1 and 2 on the following page.

- a) For each figure, explain:
 - how were the experimental points obtained;
 - which type of reactions determines the observed events;
 - what is the meaning of the peaks.

For Figure 1 only:

- the data of the Figure were collected at an angle $\theta = 166^{\circ}35'$ as indicated, however the authors have measured data at a number of different angles. Explain the meaning of the curve "Fit from the analysis of the angular distributions" and which information such analysis provides.
- b) Explain briefly the relevance of this kind of reactions in nuclear research, its advantages and its limitations.
- c) Consider the diagram of states in ¹⁶O as given in Figure 3. Using the information on the diagram, identify the states corresponding to the marked peaks in Figure 2.
- d) Consider the peak in Figure 1 at $E_{\alpha}=4.264$ MeV. The authors of Figure 1 measured a total width for this resonance of $\Gamma_{\rm tot}=33$ keV, and the authors of Figure 2 measured a radiative width $\Gamma_{\gamma}=0.046$ eV. There are no other exit channels. Taking into account the spin of the populated state and the initial spins $I_{\alpha}=0$ and $I_{12C}=0$, calculate:
 - the resonant part of the elastic cross section $\sigma_{\rm el,res}$ at the resonance energy;
 - the radiative cross section σ_{γ} at the resonance energy;
 - the non-resonant part of the elastic cross section $\sigma_{\rm el,pot}$ at the resonance energy (without including the Coulomb cross section).

For the channel radius use the interaction radius $1.3 \times (A_1^{1/3} + A_2^{1/3})$ fm.

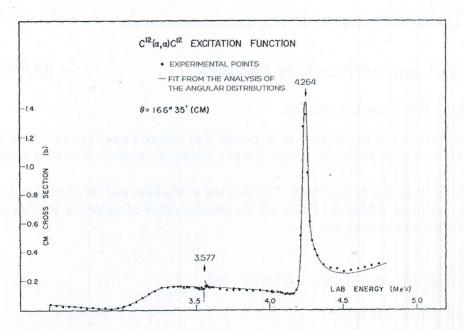


Figure 1: Yield of α particles (cross section) for the 12 C(α , α) 12 C reaction as function of bombarding energy. Adapted from C. Miller Jones et al., Nucl. Phys. 37 (1962) 1.

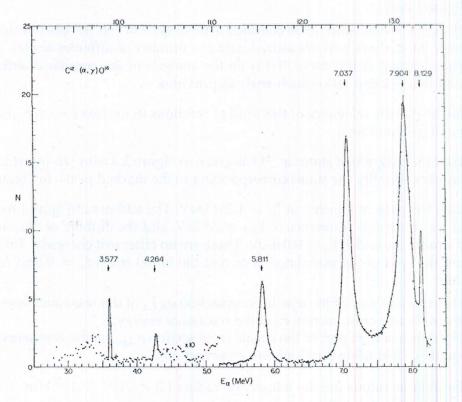


Figure 2: Yield of γ rays for the 12 C(α , γ) 16 O reaction as function of bombarding energy. Adapted from J. D. Larson and R. H. Spear, Nucl. Phys. 56 (1964) 497.

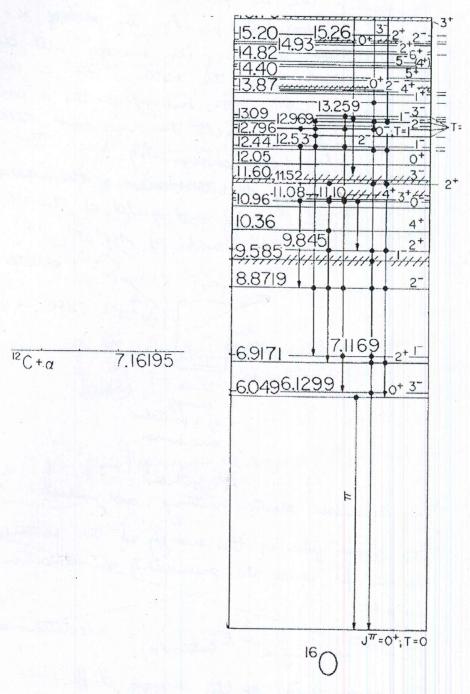


Figure 3: Energy level diagram for ¹⁶O. Adapted from D. R. Tilley et al., Nucl. Phys. A 564 (1993) 1, revised 2014.