Algemene Natuurkunde III

Ga naar: navigatie, zoeken

Samenvattingen

Klik hier om de samenvattingen te bekijken

Informatie over het examen

Dit vak wordt gegeven door professor Huyse. In januari 2006 was er door een vergissing geen mondeling examen, sindsdien is het steeds schriftelijk. Het examen is openboek. Toch opletten voor de meer afleidingsvraag, deze durft wel eens tegen te vallen. Het examen is nogal raar. De eerste vraag durft wel eens heel veel tijd op te slorpen, en de "kleine vraagjes" zijn vaak tricky... Het belangrijkste is inzicht in de materie te hebben. Probeer veel vragen aan de prof en de assistent te stellen tijdens het jaar, zodat je zeker bent dat je het telkens ten volle begrijpt (citaat van Niels Bohr: "Those who are not shocked when they first come across quantum theory cannot possibly have understood it."). Toevoeging: Zorg voor correcte verwoordingen en volledigheid, zeg eerder "E=mc²" dan "massa is energie" (of iets gelijkaardigs). Let tijdens het jaar ook goed op bij experimenten, die durven wel eens terugkomen op het examen. Bij de grote open vragen zoekt hij naar bepaalde kernwoorden, zorg dus dat je zeker de juiste termen die hij wilt horen in je antwoord verwerkt.

Vanaf 2017-2018 wordt het vak gegeven door professor Bartic en professor Cocolios. Het examen is gesloten boek, maar er mag een formularium gebruikt worden.

Examenvragen

Januari 2019

Examen 28 januari 2019

Januari 2018

Examen 29 januari 2018

Januari 2017

Examen 30 januari 2017

Augustus 2015

AN III (Augustus) (2014-2015)

Januari 2015

  • Bespreek in functie van de frequentie de manieren waarop fotonen kunnen gecreeerd worden en hoe ze interageren met materie. Geef de gelijkenissen en verschillen in de fysische processen. [Maximumum 2 bladzijden]
  • Net zoals vrije elektronen in een metaal, kunnen we ook de protonen en neutronen die gebonden zijn in de kernpotentiaal beschouwd worden met het Fermi–gasmodel en kan de Fermi–energie berekend worden. Bekijk de kern met A nucleonen waarvan het aantal protonen (Z) niet gelijk is aan het aantal neutronen (N). Wat gebeurt er met de massa van de kern als het aantal neutronen niet gelijk is aan het aantal protonen? [Maximumum anderhalve bladzijde.]
  • Een oefening met een potentiaal [maximum anderhalve bladzijde]
  • Nog wat kleine vragen (weet ze niet meer allemaal):
    • Vraag 4b van januari 2012
    • Vervolledig de golffunctie. (De potentiaal gaat eerst rechtdoor, maakt dan een rechthoekige put, gaat op oorspronkelijke hoogte weer rechtdoor, maakt muur die hoger is dan de energie van het deeltje en gaat weer door op oorspr hoogte. De golffunctie is getekend tot aan het begin van de put.)
    • Wat is de maximale energie van het elektron na een Comptonverstrooiing met engammafoton van 662 keV?

...

Januari 2012

Pdf: AN III (januari) (2011-2012)

Augustus 2011

Pdf: AN III (augustus) (2010-2011)

Januari 2011

Pdf: AN III (januari) (2010-2011)

Eerste zit 2010

  • Bespreek en vergelijk de interactie van elektromagnetische golven, van leptonen en van hadronen op materie zoals atomen, molecules en vaste stof.
  • Gegeven een afbeelding van een -deeltje die opsplitst in een neutron en een in een bubbelkamer met een elektrisch veld loodrecht op het blad van 1,15 T. De kromtestraal van is 1,99 m en die van is 0,58 m. De hoek tussen het verdere verloop van en tussen de weg van is 45,6 graden.
    • Bereken de impuls van en van .
    • Bereken de impuls van het neutron.
    • Bereken de energie van . (gegeven zijn massa van n en massa van )
    • Bereken de snelheid en de massa van .
  • Leid de formule voor het relativistische Doppler-effect af, met behulp van Einsteins eerste postulaat, de Lorentz-transformaties en de vergelijking van de elektromagnetische golf .
  • Vijf kleine vraagjes:
    • Quick quiz 43.2
    • Kunnen protonen vervallen of in iets anders veranderen? Bespreek
    • foto-elektrisch effect: Als de golflengte van de invallende lichtdeeltjes toeneemt, wat gebeurt er dan met de kinetische energie: (a) gelijk blijven, (b) toenemen, (c) afnemen, (d) meer informatie nodig.
    • Geg: het begin van de afbeelding van een deeltje die met een grotere energie als het potentiaal voorbij een potentiaalkuil gaat, teken verder (en probeer zo precies mogelijk te zijn)
    • Vijf onstabiele deeltjes laten vervallen tot hun stabiele nazaten (vul aan (er kunnen +'en en deeltjes missen). (gelijkaardig als in de oefenzitting):

Tweede zit 2009

  • Bespreek angulair moment en spin in de moderne fysica.
  • Een Stikstof kern (A = 12) vervalt naar een geexicteerde dochterkern via betaverval. Die vervalt daarna nog verder. Bespreek soorten straling en hun invloed op materie, wees zo volledig mogelijk. (Er waren ook energieën gegeven over excitatie niveaus enzo zodat je golflengtes kon berekenen etc)
  • Berekenen het angulair moment van een waterstof atoom met l = 3, houd rekening met intrinsieke spin. Geef de vectordiagramma's en reken alle mogelijke waardes uit.
  • Kleine vraagjes:
    • Elementaire deeltjes komen voor in deeltjesversnellers en kosmische straling, bespreek.
    • Deeltjes in een magnetisch veld, teken de baan (ion, neutraal en electron, allemaal dezelfde energie)
    • tot wat kan proton antiproton annihilatie leiden
    • welke fysische principes zorgen ervoor dat wij muonen detecteren?


Eerste zit 2009

  • Bespreek in functie van de frequentie de manier waarop fotonen kunnen worden gecreëerd en hoe ze interageren met materie. Geef de gelijkenissen en verschillen in de fysische processen.
  • Net zoals de vrije elektronen in een metaal, kunnen ook de protonen en de neutronen die gebonden zijn in de kernpotentiaal beschreven worden met het Fermi-gasmodel en kan de Fermi-energie berekend worden. Bekijk de kern met A nucleonen waarvan het aantal protonen Z gelijk is aan het aantal neutronen N. Leid een uitdrukking af voor de Fermi-energie van de protonen en voor die van de neutronen. Reken uit in MeV. Wat gebeurt er met de massa van de kern als het aantal neutronen niet gelijk is aan het aantal protonen?
  • Vrije neutronen hebben een halfwaardetijd van ongeveer 10,24 minuten. Beschouw een pakketje van 100 neutronen met een kinetische energie van 625 MeV. Hoeveel neutronen zullen er nog over zijn nadat het pakket een afstand van 150 miljoen km heeft afgelegd?
  • Kleine vragen
    • Spanning-stroom figuur getekend voor Platinum, vul de figuur aan voor Natrium en Zilver. Alle drie worden beschenen met hetzelfde licht, dus zowel intensiteit als frequentie gelijk. (Je moet dus kijken wat er gebeurt met de stopping potential en met de maximale stroom)
    • Twee ruimteschepen hebben een constante snelheid ten opzichte van elkaar en doen een aantal dingen, over welke dingen zijn ze het eens: tijdsinterval knipperlicht in 1 schip, snelheid tov elkaar, lengte van het tweede schip, snelheid lichtstraal uitgezonden in 1 van de schepen, snelheid ionen uitgestuwd door tweede schip (behoud van impuls).
    • Een aantal reacties van verval van deeltjes en radioactiviteit aanvullen (4 van de 5 kwamen letterlijk uit de Serway)
    • Een elektron en een neutron hebben dezelfde Broglie-golflengte, wat is er dan nog gelijk? (letterlijk uit QuickQuiz Serway)
    • Een vraag over de bandentheorie: Een tekening met 2 banden, in de bovenste zitten 2 elektronen, in de onderste zijn enkele gaten. De overgang van het eerste elektron naar de onderste band staat getekend. Kan het foton dat uitgezonden wordt wanneer het tweede elektron overgaat naar de onderste band kortere, gelijke of langere golflengten hebben dan het eerste?

Tweede zit 2008

  • Vergelijk elektronen gebonden aan een atoom, met nucleonen gebonden aan een atoomkern.
  • Bereken de uitdrukking van de relativistische energie van een deeltje dat versneld wordt onder een constante kracht volgens de y richting. (bij t=0, is v=0 en op tijdstip t is de snelheid v). Werk alle stappen uit (differentialen en integralen). Wat gebeurt er als -> 1.
  • Leidt ruwweg de laagste energie af van een deeltje in een 1-dimentionale doos met lengte L, gebruik makend van het onzekerheidsprincipe van Heisenberg.
  • Kleine vragen
    • Neutronen in ons lichaam: verrassend? Hoeveel in een persoon van 67 Kg.
    • Hoeveel weegt Kr met A=74 meer of minder dan Br met A=74? Waarom? Wat is hier het gevolg van?
    • Vergelijk een rode laserpointer met een zaklamp (gloeilamp) die beiden op een identieke batterij zijn aangesloten. (Vermogen, coherentie, frequentie, ...)
    • Tot wat leidt annihilatie van een proton en een antiproton. (zoveel mogelijk vervalwijzen)
    • Vergelijk het compton effect met het fotoelektrisch effect. (Wat hebben we hieruit geleerd?)

Eerste zit 2008

  • De muon demonstratie proef kan maar totaal verstaan worden door op verschillende delen van de cursus te steunen. Bespreek alle fysische aspecten van het ontstaan van het muon tot het registreren van de signalen.
  • Bij de inleiding van de atoomfysica werden de Lyman, Balmer en Paschen reeksen weergegeven in een energiediagram van het waterstofatoom (figuur op slide 6 van hoofdstuk 42). Hierop werd enkel het hoofdkwantumgetal n getoond. Teken dit diagram opnieuw met alle relevante kwantumgetallen en geef ook alle mogelijke overgangen tussen de niveaus met de hoofdkwantumgetallen 1 tot en met 3, wederom rekening houdend met alle relevante kwantumgetallen. Bespreek kort de ontaarding van de diverse niveaus. Wat gebeurt er met het diagram als het waterstofatoom zich in een uitwendig magneetveld bevindt.
  • Gegeven zijn pi+ deeltjes met een kinetische energie van 250 MeV.
    • Bereken de snelheid van de deeltjes.
    • Bereken de impuls van de deeltjes.
    • Bereken de afstand die de deeltjes afleggen vooraleer de helft is vervallen.
    • Geef schematisch het levenslot wee (verval tot stabiele eindproducten) van een enkel pion dat in een nevelkamer komt.
  • Kleine vraagjes: (belangrijk bij de multiple choice vraagjes is dat het mogelijk is dat je niets moet aanduiden)
    • Leid de formule voor Lorentztransformatie af voor de y-component van de snelheid voor een beweging volgens de x-richting. (formule 39.17)
    • Geef 3 voorbeelden van de effecten van het microscopische op de ontwikkeling van het heelal (+uitleg).
    • Quick Quiz 43.6 en 43.7
    • Quick Quiz 43.2
    • Bekijk het licht van een groene laser enerzijds en het licht van een gewone zaklamp anderzijds. Welke uitspra(a)k(en) zijn waar?
      • De laser heeft een groter vermogen
      • Het licht van de zaklamp is coherenter
      • Er zijn meer frequenties bij het laserlicht

Tweede zit 2007

  • Bespreek het concept angulair moment en spin in de moderne natuurkunde.
  • Leidt formule 39.10 af gebruikmakend van de Lorentztransformaties. Hint: vertrek van de uitdrukking van een harmonische elektromagnetische golf.
  • Een hoog-energetisch foton creëert een pi+ pi- paar. Wat is de minimale frequentie van het foton? En hoe groot is de golflengte dan? Veronderstel dat de twee pionen niet met elkaar annihileren wat gebeurt er dan verder? Volg dit proces tot alle eindproducten stabiel zijn.
  • Kleine vraagjes:
    • Kan een proton vervallen of in iets anders veranderen?
    • Natuurlijke radioactiviteit wordt omschreven als radioactiviteit aanwezig op aarde en niet door de mens gemaakt. Moet dit altijd langlevende (met levensduren van miljarden jaren) radioactieve kernen zijn? Leg uit.
    • Als de golflengte van het licht dat invalt op een metaaloppervlak langer wordt, zal de kinetische energie van de photo-elektronen uitgestuurd door het oppervlak: (meerkeuze: toenemen, afnemen, gelijk blijven, moet meer info hebben).
    • Wat zijn de essentiële verschillen tussen het foto-elektrisch effect en het Compton effect. Ook in wat er uiteindelijk uit geleerd is.
    • Een atoom heeft de volgende golflengtes in zijn emissie en absorptie spectra: Emissie (nm): 207, 249, 355, 497, 829, 1243 Absoptie (nm): 207, 249, 355. Uit een ander experiment blijkt dat de ionisatie-energie van dit atoom 7eV bedraagt. Teken het energiediagramma van dit atoom en plaats de emissieovergangen.


Eerste zit 2007

  • Formuleer en bespreek het uitsluitingsprincipe van Pauli heel nauwkeurig. Bespreek de invloed van dit principe vanuit het oogpunt van de verschillende delen van de cursus: atoomfysica, fysica van moleculen en vaste stoffen, kernfysica en deeltjesfysica.
  • Beschouw een deeltje met massa m dat door constante kracht versneld wordt in de richting van de y-as. Veronderstel dat het deeltje vanuit rust vertrekt en op tijdstip t een snelheid v bereikt. Leid de uitdrukking voor de (relativistische) energie van het deeltje af, en werk daarbij alle stappen volledig en nauwkeurig uit. Wat gebeurt er indien de contractiefactor dicht bij 1 ligt?
  • Een bundel fotonen (afkomstig van een of andere laser) met een golflengte van nm ontmoet een bundel Na-atomen met A = 23 die in de tegengestelde richting "reist".
    • Bepaal de maximale snelheid die atomen mogen hebben opdat er fotonen geabsorbeerd zouden worden.
    • Hoe groot is de verandering in snelheid die veroorzaakt wordt door een foton dat geabsorbeerd wordt door een atoom?
    • Hoeveel fotonen zijn er nodig om een Na-atoom dat met een snelheid van 50 m/s reist volledig tot stilstand te brengen?
  • De kleine vraagjes:
    • Een neutron kan maar 10 minuten blijven leven, en toch bevinden er zich hopen neutronen in ons lichaam. Hoe kan dat? Hoeveel neutronen zijn er aanwezig in het lichaam van een persoon met een massa van 67 kg?
    • Beschouw de elementen Kr, met A = 74, en Br, met A = 74. Welk van deze elementen is het zwaarst? Hoe groot is het massaverschil? Wat heeft dit voor gevolgen?
    • Kan een reactie van een antibaryon met een meson een baryon voortbrengen? Leg uit!
    • Metalen en halfgeleiders reageren verschillend op temperatuurswijzigingen: hun resistiviteit verandert. Wat gebeurt er precies, en hoe kan je dat verklaren?
    • Leg uit aan de hand van een drietal voorbeelden hoe microscopische "ontwikkelingen"/deeltjes/... een invloed uitoefenen op de ontwikkeling van de kosmos/het universum.

Eerste zit 2006

Reeks 1

  • Is de relativteitstheorie nodig voor het begrijpen van de Quantummechanica en omgekeerd? Wat zijn de overeenkomsten en verschillen tussen beiden? Bespreek
  • Dan kwam er een vraagje over het (relativistische) dopplereffect. Er werd gevraagd om de formule zelf af te leiden
  • De derde vraag was een oefening
  • De vierde vraag was onderverdeeld in allemaal kleinere vraagjes (ik dacht 5). Ik weet ze niet meer allemaal maar enkelen waren:
   - met gegeven energieën van uitgestuurd licht zelf de transitietoestanden van atomen opstellen 
   - een klein oefeningetje over muonen
   - een vraag hoe dat het begrijpen van het allerkleinste (de ontdekkingen met deeltjesversnellers 
     etc) ons kan helpen om de theorie van het allergrootste (de kosmos) te begrijpen

Reeks 2

  • bespreek potentiaalvormen gezien in de cursus die aanleiding geven tot kwantumtoestanden, vergelijk ze en zoek de verschillen, geef genoeg tekeningen
  • protonen en neutronen in de kern kunnen ook met de fermi-diracverdeling beschreven worden. Beschouw een kern met N=Z, wat is de fermi energie van neutronen en wat die van protonen (twas iets anders geformuleerd, maar het komt neer op dat systeem van vrije elektronen theorie voor metalen toe te passen op nucleonen) Hoe verandert de massa van de kern als A!=Z?
  • oefening: helft van pionen vervalt in bepaalde tijd (5*10^(-8)s of zo). De kinetische energie van de pionen is 240MeV, bereken hun snelheid, hun impuls en de weg die ze afleggen in de tijd dat de helft vervalt.

Kleine vraagjes

  • waar of niet:
- kans om gebonden elektron in kern te vinden is niet nul (gebonden is gebonden aan de kern)
- kans om gebonden elektron op 10 µm van de kern te vinden is niet nul
- als meest waarschijnlijke afstand voor het elektron de bohrstraal is, dan is zijn energie niet afhankelijk van een magnetisch veld
  • klok op zolder en een in de kelder, welke beweegt sneller (of beide even snel?) als je de effecten van de zwaartekrachtskromming van de ruimte verwaarloosd?
  • aantal emissie en abs lijnen gegeven + ionisatiepotentiaal: geef energiediagramma
  • neutronen vervallen relatief snel, zijn ze dus wel geschikt voor industriele toepassingen? (geef een drietal voorbeelden)

Tweede zit 2006

1) gamma-straling valt in op een scintillatie detector gekoppeld aan een fotobuis en geeft bijgevolg een signaal. Leg alle fysische principes uit vanaf het invallen van de gamma straal die maken dat er een signaal wordt gegeven.

2) Het element Na uit tabel van mendeljev: Wat is de ionisatie energie van een apart atoom? En hoeveel energie is er nodig om een vaste-stof Na te ioniseren? Leg het tweede uit met een energie diagramma (incl Fermi energie etc.). Geef uitleg bij de twee verschillende situaties.

3) Het Totale impulsmoment voor een atoom in de l = 2 toestand. Hou rekening met de intrinsieke spin. Geef de vector diagramma's. Geef ook de projecties op een z-as en hun waarden.

4) a) licht van een laser en licht van een gloeilamp, kruis aan:

- de laser heeft het hogere vermogen
- licht van de gloeilamp is coherenter
- in het laserlicht bevinden zich meer frequenties

b) Astronauten op reis in een ruimteschip dat vliegt met een snelheid dicht tegen de lichtsnelheid. Ze worden betaald per uur. Volgens welke klok zou ze het voordeligst betaald worden?

- klok op ruimteschip
- klok in controle ruimte op aarde
- eender welke klok?

c) de positie van een deeltje is exact bepaald als X = 0

- de snelheid van het deeltje in de y richting is oneindig
- de impuls in de x-richting is onbepaald
- de positie in de z-richting is gekend

d) 3 deeltjes: een elektron, een atoom met atoommassa 1 en een ion met atoommassa A/2. Gegeven: een magnetisch veld loodrecht in de pagina. Geef het pad dat de deeltjes zullen volgen als ze door het magneetveld bewegen. Alle deeltjes hebben dezelfde hoeveelheid energie.

e) Geef de fysische principes die ervoor zorgen dat we muonen detecteren op aarde.